Communication between
Robots and a Computer via the Internet

Final Report

Andreas Bernhard Max Hofmeier

Submission Date: 26.04.2005
Student ID: 2406108

This report has been submitted for assessment towards a Bachelor of Engineering De-
gree in Computer Systems and Networks (2388) BEng in the School of Engineering,
South Bank University.

This report is written in the author’s own words and all sources have been properly
cited.

Author’s signature:

Acknowledgements

I would like to thank my supervisor, Dr. Shuwo Chen, who supervised this project
and was always ready to answer my questions.

Thanks are also given to other people from London South Bank University and
the University of Applied Science Bremen, who offered their assistance to me
while doing this project. Dr. Chris Merridan, the technical assistant and Mr.
Jianzhong Shang, who supported me in dealing with the robot experiment. Dr.
Thomas Risse who helps me to organise of my overseas-term. My German class
mates stood on my side with advice and encouragement. All peoples who provided
help in form of materials such as free software (GNU Linux), free documents
(web-sites), articles, and books.

1

Abstract

This report describes the final year project done by Andreas Hofmeier. The
project is aimed to develop the software tool for the communication between
robots and computers on the Internet to realise the remote control of robots via
the Internet.

The feasibility study of controlling robots on the Internet was re-examed, iden-
tifying the certain restrictions affecting the communication and hence control on
the Internet. One conclusion has been drawn that the time delay is the most
important restriction is caused by the local network but not by the Internet.
Several approaches to the restrictions were studied and a promising method, the
line monitor, was developed.

A software platform in form of a library for GNU Linux was developed to provide
the necessary tools for implementing robot control on the Internet. The platform

is successfully used to control a Cartesian robot in laboratory test.

The results have proven that design methodology for the project are correct and
the theoretical results will benefit future development.

11

CONTENTS iv

Contents
[Aim and Objectives| v
L Deliverables| vi
(1_Introduction| 1
|2 Technical Background and Context| 2
2.1 Modes to Control a Robotl 000 2
2.1.1 Direct Controll L 2
2.1.2 Supervisory Control| oo 3
2.1.3 Job Scheduling| o 3
2.2 Levels of Processing] 3
2.3 Adaptability of the Program which Controls the Robot{. 4
R4 Teedbackl 5
2.5 Real Time and Bandwidth Constrainsl 6
251 How the Internet Workd 6
[2.5.2 Changing Behaviour and Delay| 8
[2.5.3 Carrier Sense Multiple Access with Collision Detection|. 8
254 lLeveltoUsel 8
2.0.5 Monitor the Linelo o oo 9
[2.5.6 Buffer to Compensate Random time Delay| 9
2.50.7 Usea Simulatorl oo 9

|3 Technical Approach| 11

CONTENTS %

3.1 'The Ping Measurement| 11
PING| 11

BI2 Source — Destinations 11

8.2 Basic Concept|. e e e e 13
3.3 Implementation of the Library| 13
13.3.1 Network Layers|. 14
13.3.2 Usage of the Linux Network Implementation| 14
8.3.3 Block Transfer Functions| 17
13.3.4 Line Monitoring Functions| 19
B8.3.5 Authentication| Lo L 21

8.4 Demonstration with a Real Robot|o o000 22
B.41 The Robotl 22
3.4.2 Hardware-Interface to the Robotl 23
3.4.3 Software-Interface to the Robotl. 25
B.44 GUI and Stmulatorlo o oo o 26

4 Results and Discussion| 28
4.1 Analysis of the Ping Measurement| 28
4.2 Result of the Ping Measurement| 30
4.3 Test of the Library| o 32
4.3.1 Basic Functions o oo 32
4.3.2 Block Transfer Functions| 0L 33
4.3.3 Line Monitoring Functions|00, 33

CONTENTS

IA.A.I Ilill!l&&i]ls‘lll‘sl iis:gj

I4l4l2 Ei(}tt !y Ellsz_lllt f:ItzLS:g:l

(45 Test of the GUT and the Simulatord
EC oSt IR aE for Furtl Work

.1 Project Conclusions|

©.2 Personal Conclusions|

5.3 Recommendations for Further Workl

|6 Bibliography and References|

[7 Project Planning|

7.2 Gantt Chart of Final Stagel o

7.3 Project Schedulel

[7.3.1 Comparison: Pre and After Interim Stage|

[7.3.2 Comparison: After Interim Stage and Final Stagel

7.4 Milestonesl

[Appendix A: User’s Manual GUI for Robot and Server|

|A.1 Both Programs (guirobot and guiserver) explained|

IA.2 Manipulate the Position of the Robot’s Plattorm|

IA.3 Stopping the Robot|

|A.4 Starting both Programs, Parameter|. 000

|[Appendix B: API of the Network Library|

vi

34

35

35

36

36

37

37

38

42

42

42

44

44

46

49

50

50

o1

o1

o1

53

CONTENTS

[Appendix C: Source Code of the Network Library|

[C1

src/lib/libcomm.hf oo

[C2

src/lib/libcomm.c|.

[Appendix D: API of the Interface]

[Appendix E: Source Code of the Interface)

E1

src/example/interface.c| oL

[Appendix F: Source Code of the GUI]|

F1

src/example/guicOmMmOn.c|o oL e

F2

src/example/guirobot.c| o oL

F3

src/example/guiserver.clo oL

[Appendix G: Source Code of the Tests|

GI

src/test/testO01lsockets.cfo oL

G2

src/test/test002integer.cf Lo oL

[G3

src/test/test003block.c| oo

[G1

src/test/tesO0brealtime.cf oL

G5

src/example/testO0linterface.c]o o oL

vii

66

66

69

90

95

95

101

101

103

110

115

AIM AND OBJECTIVES viii

Aim and Objectives
Aim

The aim of the project is to develop a software platform on GNU Linux systems
(in the form of a library) for the communication between a server and robots to
realise remote control of robots over the Internet. The communication between
robots is allowed as well.

Objectives

1. (a) Feasibility study of real-time control of robots on the Internet.
(b) A block diagram of the architecture of an example system which can
control a robot remotely
2. (a) Developing the library
(b) Developing the simulator and the user interface (UI)
(¢) Demonstrating the platform by using a simulation. Showing that it is
possible to control the simulated robot over an Internet connection.
3. (a) Developing an interface to the real robot

(b) Demonstrating the platform by means of the real robot. Showing that
it is possible to control the real robot over an Internet connection.

DELIVERABLES ix

Deliverables

The objectives have been met and the deliverables include,

1. The Library (the Software Platform)

2. Documentation of the Library (API; description of the functions; how to
use)

3. User Interface

4. Documentation of the User Interface (User manual)

5. Simulator

6. Documentation of the Simulator (User manual)

7. Interface between Library and real Robot, for Demonstration.
8. Interim Report

9. Presentation

10. Final Report

1 INTRODUCTION 1

1 Introduction

Robots become more and more important because the technical progress allows
economic and useful applications. Controlling robots over a short distance with
cables or wirelessly is quite popular, but more often robots need to be controlled
at a remote site far away from the scene. For example a robot as security guard
or a pizza-robot is operating at home while controlled from the office. To meet
this demand a communication network is required.

One of the most flexible and economical solutions is to control robots on the
Internet that works packet-oriented. All data have to be fragmented before it
can be transmitted. The transmission process on the Internet can be compared
with the postal service (Ball et al. 1999). “The packet should be there within
two days” is a possible answer to the question how long the delivery takes. This
little word “should” is the problem. It should, but there is no guarantee. If many
packets are handed in, it may take a week or more time to deliver them. The
Internet has the similar problem. Even if a packet does not need a week to reach
a recipient, it is still difficult to predict a delay time because huge amount of
users are at random using the resources on the Internet. Therefore as a user of
the Internet, a controlled robot may encounter a statistic time delay. (Elhaji et
al. 2000).

Through this project the feasibility of controlling robots remotely over the In-
ternet was studied. A software platform on GNU Linux which provides this
functionality was developed.

This platform in form of a network library provides the tools to utilise the Internet
as a communication link to control a robot. An example of using the network
library is given by a simple demonstration on a real robot. The demonstration
includes a user interface, a simulator, and an interface to the robot.

The analysis has shown that under certain circumstances it is possible to actually
control a robot on the Internet. One of the possibilities is to observe the network
connection and initiate appropriate actions when the line (connection) becomes
unusable for the remote control. This idea was adapted from Andreu et al (2003)
and implemented. In this report it is called the line monitor.

The report is structured in the following way: the first two sections define the aim,
the objectives, and the deliverables of the project. The next section introduces
the technical background. After this the technical approach will be explained
in detail. The results of the analysis and the tests are given in the next chap-
ter named “Results and Discussion”. The conclusions and recommendations for

2 TECHNICAL BACKGROUND AND CONTEXT 2

further work are given in Chapter [5] After that the Bibliography is listed. It
is followed by details about the planning of the project compared with its ac-
tual realisation. The last parts of the report are the appendices which include
the software and its documentation (user’s manual and application programmer
interface).

2 Technical Background and Context

2.1 Modes to Control a Robot

Han et al (2004) distinguishes between three modes to control a robot which
were adapted. This three points are extreme examples only. A robot in the “real
world” will be somewhere between those extreme points. This depends highly on
the application.

2.1.1 Direct Control

Within this control mode the hardware is controlled at lowest level over the
network. There is no intelligence or data processing on the robot’s side.

For example: the robot receives a bit stream which represents its outputs. The
robot receives a package of n bits analogous to n output-bits. These outputs
can be simple actors which can only be switched on or off (one bit) or complex
solutions with digital-to-analogue converters which are controlling a DC-motor
(maybe 12 bits).

This mode requires strict time constraints because the controlling is time based.
If the robot should move one meter in a direction the corresponding motor for
this direction has to be switched on for exactly the time which is necessary to
cover this distance. If the motor is switched on longer the robot will cover a
greater distance and vise versa. The engines has to be switched “in time” but
this is almost impossible if the time for transmitting a bit (or a package if more
than one motor has to be controlled) varys from one command to the next one.
If the time-delay would have been constant, it could be simply subtracted in the
calculation.

Another problem occurs if the connection breaks down. When the robot receives
a “start moving” command just before the connection fails it may move until the

2 TECHNICAL BACKGROUND AND CONTEXT 3

battery is empty. This can be a hazard if, for example, the robot hits someone.

2.1.2 Supervisory Control

This control mode controls the robot on a much higher level. For this reason
more intelligence is needed on the robot’s side.

A target is transmitted to the robot. The robot has to evaluate this target and
calculate the appropriate action to reach it. The target can be transmitted in
relative (Az, Ay) or in in absolute (z, y) coordinates (In this case it is assumed
that the robot has two degrees of freedom — can move in two dimensions.) In the
first case the robot has to calculate which actors have to be switched on and for
how long to cover the given distance in the right direction. In the second case
the robot has to know its current position to calculate the Az and the Ay which
can be used to move to the target.

The calculation of Az and Ay may include considerations like:

e What is the fastest way?
e What is the way which needs the fewest resources (energy)?

e Which way causes no hazards or damages? Are they any hindrances?

In this mode the time constraints are not as strict as in the direct control because
the robot will stop moving if the target is reached and no new targets are receive
in time. Normally hazards only occur if something is moving or is “in action”.

2.1.3 Job Scheduling

Within the Job Scheduling Mode a whole sequence of targets or jobs is transmit-
ted to the robot at once.

2.2 Levels of Processing

To be able to “teleoperate” something (for example to control a robot from far
away) at least three levels of data-processing are necessary. These three levels

2 TECHNICAL BACKGROUND AND CONTEXT 4

are the human operator, the User Interface (UI), and the robot control program.
They are illustrated in figure [I}

Techni cal System
USER ul : Robot
Human Oper at or User Interface : Control Program

------------- On this point a conputer network is used
whi ch causes the randomtinme del ay.

Figure 1: Different Levels of Processing which are necessary to Control a Robot
Remotely.

e The human operator makes the decisions and gives the system its purpose.
There will be no systems without a human operator at some level because
there is no point in doing something without gaining an advantage. This
human interaction can be within a wide range from “switching it on to get
a cup of hot coffee out of it” to “control a space-explore-robot to explore
what is out there”. The human operator always gives the commands to an
User Interface.

e The user interface has to read the commands from the user and transmit it
through some kind of network to the robot-control-program. The program
which performs the necessary operations to handle this job runs on com-
puter in front of the user. This can be a kind of robot-control-server if it is
taken as a central control station.

e The robot control program receives the commands from the user interface
and applies them to the hardware of the robot. This job is done by a piece
of software which runs on a computer on (or near to) the robot.

2.3 Adaptability of the Program which Controls the Robot

In these days the requirement of multi-functionality becomes more important.
The robot should be as flexible as possible to be used in a wide spectrum of
applications.

To use a robot for a new application the program which controls it has to be
changed. As discussed above this program is made up of three components. (If
it is assumed, that there is some kind of “program” in our brain.)

2 TECHNICAL BACKGROUND AND CONTEXT 5

In case that the “technical system” is very primitive it may be enough to train
the human operator to do other things with it. An example could be a simple
remote control of a crane which switches actors remotely.

An important improvement of our technology today is that it helps us to perform
our tasks. The time of a human operator is valuable and should not be wasted
in doing things which can be done by a computer. Many calculations can be
processed much faster and more accurate by a computer than a human.

The consequence of this is that it may not be enough to train the human operator
to do new things with the robot. In this case two components are left: The GUT
(Server) and the robot control program.

One solution is to keep the robot control program as simple as possible and
transfer all intelligence into the GUI (the Server). In this case the direct control
is in use. As discussed this can be a problem because of safety considerations. If
the network link breaks down no server or human operator can stop the robot.
There must be some processing on the robot’s side. At least an emergency stop
function has to be implemented. This solution makes it possible to change the
behaviour of the technical system only by changing the server/GUI side. This
can be an advantage.

On the other hand it is possible to perform one part of the processing on the
robot’s side. This moves the classification of the system closer to the supervisory
control. The GUI/server transmits a job or a target to the robot and monitors its
execution. It might be necessary to change both, the GUI/server and the robot
control program in order to change the behaviour of the system. Advantages of
this solutions are: distribution of processing work on both sides, probably less
bandwidth requirements, and a possible gain in safety.

2.4 Feedback

Another important issue needs to be considered: the feedback. This is the dif-
ference between operating or affecting something and controlling it. Affecting
means to do something without getting a response. There is no guarantee that
everything happens the way as it was intended to happen. Controlling applies a
feedback which closes this (response-)loop. For example, it can be seen what the
robot does. In this case it is likely that the bandwidth of the feedback connection
is much bigger than the control connection because of the video data. Figure

LGUI stands for Graphical User Interface.

2 TECHNICAL BACKGROUND AND CONTEXT 6

illustrates this example. Unfortunately these meanings are often confused. In
this report the word “controlling” is used for both.

Techni cal System

USER ul Robot

Human Oper at or <:| User Interface Control Program

------------- On this point a conputer network is used
whi ch causes the randomtinme del ay.

Figure 2: Different Levels of Processing which are necessary to Control a Robot
Remotely: A Closed-Loop-System with Feedback.

2.5 Real Time and Bandwidth Constrains

The term “real time” is used for systems which have to complete a task in a certain
time. This time depends on the application but it can be said that the (reaction-
)time must be short enough to perform an in-time control of the environment. In
this case the transfer of data over a network has to be finished within a certain
time-limit.

Bandwidth describes how much data a network is able to transfer in a certain
time. The time delay will increase if more data is transmit because the data has
to be buffered until the line is free. If continuously more data is transfered the
network can no longer transfer all the data without loosing some of it.

Both terms are interdependent. This will be explained in the following section.

2.5.1 How the Internet Works

Before it is possible to explain what the problem causes it is necessary to provide
an overview about “how it works”. If detailed information is requested please
refer to a textbook, for example, Forouzan (2001) from which this overview was
condensed.

Figure |3 shows an overview of the different levels of data-processing which have
to be passed before a communication is possible. The diagram illustrates these
levels on a Hyper Text Transfer Protocol (HTTP) request. Those requests are
generated if a web-page is opened. In the case of the example it was

2 TECHNICAL BACKGROUND AND CONTEXT 7

O8I - Model I'nternet HTTP- Request in Protocol Data Units
GET /an-h/en/ papers/|sbu/ HTTP/1.1 (PDUS)
. . . . Host: www. | gut. uni - bremen. de
Application Layer Application User-Agent: Mbzilla/5.0 Galeon/1.2.9 (X11; Linux)
Accept - Encodi ng: gzip, deflate, conpress;q=0.9
Accept - Charset: |SO 8859-1, utf-8;q=0.66, *;q=0.66
uses Keep- Al i ve: 300
Presentation Layer Connection: keep alive o oo image/gif
cept: image/ png, i mage/j peg, i mage/ gi
TCP- Socket - St r eans Referer: http://ww. an-h. de/ an- h/
I f-Mdified-Since: Wed, 26 Jan 2005 20: 00: 21 GMI
. I f-None- Mat ch: "c012-d2-41f 7f 6d5"
Sessi on Layer or UDP- Sockets) Cache- Control : max-age=0
Transport Layer TCP ubP
:> segment
Net wor k Layer 1P
:> dat agr anm
Data Link Layer MAC/ Et her net
:) frame
Physi cal Layer Har dwar e
01101001100010110101 bi t/signa
UL stream

- Header

Figure 3: Comparison between OSI-Model and the real Internet

http://www.lgut.uni-bremen.de/an-h/en/papers/lsbu/. The OSI-model (left
hand side) is a general description of the network layers. These OSI layers as-
signed to real layers which are used in the Internet. The right hand side lists the
different types of protocol data units (PDUs) (packages) which are created by
each layer. Each layer adds management information (a header) which are shown
as gray extension. In this report the general term package is used for different
PDUs.

To understand the idea behind these levels of layers it can be compared to telling
someone a long story who is on the other side of the world. The narrator (the
application) starts writing it and gives the script its secretary (the transport layer,
TCP). She knows that the postal service accepts letters up to a maximum of 80g.
For this reason the story has to be segmented into pieces which fit on less than
80 grams of paper. In order to make it easier to recombine the story on the other
side of the world, supporting information like a segment-number is added to each
letter. This letter is given to the next secretary (the network layer, IP). In this
step the letter will be placed in an envelope. This envelope on which the source
and destination address is written will be handed in to the nearest post office
(the data link layer). Within the post office the letter will be packed into a bag
which is transported to another post office. This office may resort the bags and
send it to the following post office. This process (which can be compared with
the routing and transferring data over a line [physical layer|) will be continuing
until the letter reaches the mail box of the receiver. Then the reverse process

2 TECHNICAL BACKGROUND AND CONTEXT 8

takes place.

2.5.2 Changing Behaviour and Delay

The problems which arise from this process are: the system must work transpar-
ently. That means that the higher levels do not know what the lower levels are
doing. For this reason the behaviour of the lower levels may vary. An example
for this is a replacement of one secretary.

The same problem occurs during the transport. There is no guarantee that the
letter will always take the same route. It is unknown which way a letter will
take. This depends on the environment and on the network load or utilisation.
If, for example, an earthquake destroys a road, the mail must take another way.
The workload of the system may change faster than the environment. During the
rush-hour it takes longer to cover a distance than on a “normal” daytime. This
can be compared with school hours — all students using the network. This both
phenomena cause the random time delay.

2.5.3 Carrier Sense Multiple Access with Collision Detection

The next problem arises from the way in which the physical layer transmits data.
Ethernet is used in most of the end-user networks of the Internet. Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) is in use within Ethernet.
This protocol tries to broadcast when nobody else is sending data. If the network
load increases it becomes harder to find a gap to send the data. Because of
physical limitations (transmission speed) computers do not recognise fast enough
if data is sent and start sending by them selfs. This causes collisions. Data is
destroyed and has to be sent again. Because of this the delay increases with rising
workload. These both are reasons for the unpredictability of the transport time.
This is not applicable to modern switching networks. (Fairhurst 2004)

2.5.4 Level to Use

To use the high-level Transmission Control Protocol (TCP) or the User Datagram
Protocol (UDP) to control robots is not the most efficient way. It is possible to
bypass the official transport layer by replacing it with an own protocol that is
optimised for real time traffic. Liu et al (2004), for example, developed the
“trinomial protocol”. This is a semi-real-time-protocol. It works much better

2 TECHNICAL BACKGROUND AND CONTEXT 9

than the TCP or UDP but it cannot change the lower levels. These levels have
to be used if the Internet should transport the data. They are prescribed by the
Internet itself as a standard.

2.5.5 Monitor the Line

Another possibility, which was adapted from Andreu et al (2003), is to observe
the network-connection and take appropriate actions if the connection becomes
unusable for the purpose of remote controlling. This strategy assumes that the
network is normally usable for the job. Without any further actions this method
is not well suited for direct control. Instead it is very suitable for an additional
usage.

2.5.6 Buffer to Compensate Random time Delay

Andreu et al (2003) explored the possibility of using a buffer or a stack as a “Delay
Regulator” to smooth up the random component of the transport delay. This is
done by delaying the data on the receiver side (buffer) in a way that the overall
delay stays constant. For example, if one command has to be processed in one
second, one command per second has to be ready for processing on the robot’s
side. Assuming that the maximal time delay for the transmission is 5 seconds, the
sender starts transmitting 5 seconds before the robot starts executing commands.
All data which is received earlier will be stored in a buffer. If the sender sends
one command in one second, the robot reads one command a second from the
buffer, and the maximal time-delay does no exceed 5 seconds, the commands
are constantly delayed by 5 seconds. This is the way to suppress the random
component of the time delay by extending the delay to a maximal value.

This solution is suited to be used for direct control but has the disadvantage
that the transmission takes longer than necessary. If everything works well all
commands are delayed by the same time. It makes sense to combine this solution
with a line-monitor to take appropriate actions if the maximal delay was exceeded.

2.5.7 Use a Simulator

One idea to fit a robot-control-system into existing bandwidth constrains is to pre-
vent the large bandwidth-consumption of the video-data-stream by using a sim-

2 TECHNICAL BACKGROUND AND CONTEXT 10

ulator. This simulator simulates the environment of the robot on the GUI/server
side. Figure {4| gives an example of this. (Belousov 2004; Han et al. 2001)

Techni cal System

USER —_— ul Robot

—_—
Human Qper at or <:| User Interface H Control Program

0

Si mul at or

------------- On this point a conputer network is used
whi ch causes the randomtinme del ay.

Figure 4: Different Levels of Processing which are necessary to control a Robot
remotely: A Closed-Loop-System with Feedback through a Simulator.

This solution makes a simulation of the reality necessary. However, the best sim-
ulation is still just a simulation and not reality itself. For this reason reality and
simulation may differ. Maybe the physical attributes of an object are calculated
in a wrong way or the feedback is not accurate enough and an object is pictured
in an other place than it really is. This can be a safety risk which has to be
considered.

2.6 Safety

According to the British Standard (1992) Industrial robots — Recommendations
for safety, a single point of failure must not cause any hazards. For this reason
it is very important to stop the robot if the network link breaks down. The
technique of monitoring the line is well suited to this application.

3 TECHNICAL APPROACH 11

3 Technical Approach

3.1 The Ping Measurement

To explore the feasibility of using the Internet for remote control of robots the
ping measurement was conducted. Over one week the round trip time (RTT) to
the destinations was measured every minute. The gathered data was analysed
statistically. A second ping measurement was conducted to proof the assumption
that an overload of the local network causes the majority of the time delay.

3.1.1 Ping

Ping is a tool which sends ICMPP| echo requests to the destination. The desti-
nation computer echos the request package (sends it back to the sender). The
initiator of the ping request measures the time between sending the ping and
receiving its echo. This is the RTT, the time which is necessary to transfer data
to the destination and back. The additional processing time on the destination is
immanent. This value can be neglected because it is very short in comparison to
the transfer time. The fault caused by neglecting this time minimises when the
whole ping time increases.

By default a ping package has an overall size of 84 bytes and contains the fol-
lowing parts: the IP header (20 Bytes) which specifies the source and target (IP)
address and some network management information. The ICMP header (8 Bytes)
contains a sequence-number, a checksum, and an identifier. The last part is the
data part (56 Bytes) which contains a timestamp and filling-bytes. (Forouzan
2001; Kozierok 2004; Berkeley 1996) Over one week 10080 pings were sent which
correspond to 846720 Bytes or 826 kByte in one direction per destination. The
same amount of data was sent back.

3.1.2 Source — Destinations

The pings were sent from the author’s private server which is located in the
"Schulzentrum Utbremen’ a school in Bremen, Germany. It is connected through

2The Internet Control Message Protocol works at the same level as the UDP and TCP —
it uses the Network Layer, the Internet Protocol (IP). It is used for troubleshooting and to
announce network errors and timeouts. Please refer to RFC 792 (Postel 1981) for details.

3 TECHNICAL APPROACH 12

the local school network and the network of the University of Bremen to the
Internet. This server was used because the network of the LSBU does not allow
to send pings to external computers.

All distances were calculated by using Global Positioning System (GPS) coordi-
nates. The short overview about GPS coordinates given by Guthrie (2004) was
used. All GPS coordinates were obtained from Maptech (2005) except the Unisa
one which was adapted from Kennington (2000). It was not possible to obtain any
exact GPS coordinates from the servers which were utilised. Coordinates from
the home city or near objects were used. For this reason the accuracy lays far
beyond the GPS accuracy. In addition to this the calculation results are air-line
distances and not the real lengths of the cable of the transmissions.

To calculate the distance the following steps needed to be performed. Calcula-
tion of the difference between the latitude of the destination and the latitude of
Bremen and the difference between the longitudes. After this the Pythagorean
Theorem was used to calculate the distance (the hypotenuse). The following
formula was used:

distance = \/(latitude; — latitudes)? + (longitude; — longitudes)?

The destinations were selected to give a wide spectrum of distances. It was
assumed, that the servers of the destination organisations were located within
the organisation’s main building or near to it. It was not possible to locate a
LSBU server which echoes pings. For this reason the LSBU did not become a
destination.

\ Servername \ Name of Organisation \ Distance ‘
www.unisa.edu.au University of South Australia 17,000 km
www.harvard.edu Harvard University (USA) 8,800 km
www.nationalgallery.org.uk | National Gallery of United Kingdom | 1,000 km
www.tu-dresden.de University of Dresden (Germany) 460 km
mail.hs-bremen.de Mailserver of the University of 2 km

Applied Science Bremen (Germany)

Table 1: Destinations which were used in the Ping Measurement.

For details about the results and analyse of the ping measurement please refer to

the section [£.1] (page [28)).

3 TECHNICAL APPROACH 13
3.2 Basic Concept

The first thing which was developed during this project was the basic concept.
The network library provides the communication tools to the robot and to the
server control program. A user-command takes the following way:

A user enters a command into the user interface of the GUI/server. The server
control program reads a command from the user through the user interface, eval-
uates it, and sends it through the IP network (the Internet) to the other side by
using the functions of the network library. The network library on the robot’s side
receives the command and hands it over to the robot control program. The robot
control program executes the command and controls the robot. The feedback
from the robot follows this way in the other direction.

It is difficult to clearly distinguish between these levels. For example: there is
no boarder between the GUI and the server control program in this project. In
addition to this the robot’s side includes a GUI to. This GUI is implemented to
simulate the assumed position of the robot. (In the real world at least an emer-
gency stop key has to be implemented on this side.) The name of this program
(robot and its GUI) is guirobot. The name of the server control program (and
its GUI) is guiserver.

Robot g\/\/% Server
Net wor k Library I P- Net wor k Net work Library

I nt er net

Control Program W Control Program

Har dwar e User Interface

Figure 5: Basic Structure (Concept) which is assumed in this Project

This communication has to be bidirectional. It must be possible to request data
from the robot. This could be the acknowledgement for a command, obtaining
data of the robots environment, and to monitor the robot.

3.3 Implementation of the Library

The library was implemented on the free operating system GNU Linux because
of the following reasons:

o [t is free software. The term “free software” is defined by the Free Software

3 TECHNICAL APPROACH 14

Foundation (2004) as these four rights:

1. “The freedom to run the program, for any purpose.

2. The freedom to study how the program works, and adapt it to your
needs. Access to the source code is a precondition for this.

3. The freedom to redistribute copies so you can help your neighbour.

4. The freedom to improve the program, and release your improvements
to the public, so that the whole community benefits. Access to the
source code is a precondition for this.”

e Because of these four rights a complete Linux system is available for free
(without charge).

e Special versions of Linux which are working on small computers, like Real-
Time-Linux (RTLinux) on embedded systems, are available. “A Linux sys-
tem can actually be adapted to work with as little as 256 KB ROM and

512 KB RAM” (Addison 2001). This is essential because the robot control
program often has to run on this kind of computer.

3.3.1 Network Layers

After the basic concept was clarified, the network library was implemented. The
picture [5| does not show the entire truth. The network library by itself cannot
transfer data through a network. It has to use lower levels.

During this project it was decided to used TCP for the data transmission. (Please
refer section on page [6]) The TCP and the levels underneath had to be
implemented as well. This is not part of this project. Fortunately this was done
before and it is now possible to use the implementation in the Linux-Network-
Stack. In addition to the network implementation in Linux there must be some
hardware in form of a Network Interface Card (NIC) and some network facilities
like cables and hubs. Figure [] gives an overview about the network layers which
were used in this project.

3.3.2 Usage of the Linux Network Implementation

The Linux kernel provides an interface in form of system calls to allow (user
mode) programs to use its facilities. This section gives an overview about these

3 TECHNICAL APPROACH 15

CSl - Model I nt er net | npl ement ed by

Application Layer Application, Server and Robot Control Program

Net wor k Li brary

Transport Layer TCP GN\U Li nux
Net wor k St ack
Net wor k Layer I P
includes Drivers
Data Link Layer MAC/ Et her net
Physi cal Layer Har dwar e Network Int. Card

Figure 6: Overview of the used Network Layers

system calls and the way in which they were used in this project. For more
detailed information please refer to IBM (1995).

Figure [7] shows on outline of the steps which are necessary to establish, to use,
and to disconnect a communication link — a TCP socket stream.

It is possible to accept () more than one connection on a bound port. For this
reason it is necessary to distinguish between the socket which is bound to the
port and those for incoming connections. For each new connection a new socket
is generated and given back by this system call.

The communication (in Open / Usage) between both sides is duplex (bidirec-
tional). The duplex mode (pseudo-, half-, or full-duplex) depends on the under-
lying network equipment. There is no prescribed order in which the sides have
to call send() and recv().

The functions accept (), recv(), and send () will blockﬂ by default if there is no
connection to accept, no data to receive (no data was sent), or the sent-buffer is
full (cannot absorb more data). This behaviour can be changed with fent1().

For a detailed description of the system calls used please refer to the manual
pages within the 'Linux Programmer’s Manual’.

3If a system call cannot be completed because not all necessary data is received it waits
until it can be completed. This causes a suspending of the calling function. This is called: “the
function is blocked”.

3 TECHNICAL APPROACH 16

Server Cient
(all ows connecti on) (connects)
S Create an endpoint for socket()
8 a connection (a Socket) get host bynanme() resol ve the nane of the
s i nati 1P
8 Connect this endpoi nt bi nd() ?ﬁg: :Mr;zralt(; Ogdtd?egg
- with a local port socket () Create an endpoint for
. . . a connection (a Socket
ﬁ Start listening for |listen() < : ()
- connections on this port \ connect () Connect this endpoint to
o . / the given destination.
© Accept a connection, get a accept() 9
b new discriptor to this new
w connecti on
[}
3|
8 Transnitt data send() recv() Recei ve data
TCP
—~ Stream
c Recei ve data recv send Transmitt data
S (& j Q]
8‘ Socket s
—
|3}
2
S Di sconnect close() = cl ose() Di sconnect
o
n
a

a—> b a nust be done before b
a » b a sents datato b

Figure 7: Life Cycle of a TCP Socket Stream

To simplify the process of establishing a socket-stream connection the following
functions were implemented:

e socket_accept(): Start a new thread, wait for connections, and call a
function when someone connects (server side).

e socket_bind(): Bind a socket to a port (server side).

e socket_connect(): Connect a TCP-stream to a server (client side).

In addition to this it was necessary to implement several sub-functions. All these
functions can be found in the file src/1ib/libcomm.c (appendices, section

on page [69).

For a detailed description with parameters and return values of the listed func-
tions please refer to the Application Programmer Interface (API) of the network
library — libcomm — in the appendices section (page [53]).

Please refer to section [£.3.1] (page for details about the tests which were
conducted to proof the correct behaviour of this functions.

3 TECHNICAL APPROACH 17

3.3.3 Block Transfer Functions

Any data which is sent to a socket that is connected to a TCP stream will
be transfered to the socket on the other side of this stream. The lower levels
take care about the integrity of the data. The TCP monitors and corrects the
order of the data and its integrity. This is important because data packages may
follow different routes through the network or packages are lost and must be
retransmitted. In both cases the packages need to be re-sorted on the receiver’s
side. If the connection is broken due to a network fault, recv() and send () will
return an error.

For control purposes often blocks need to be transfered. A block in this context
is a unit of data. For example: target coordinates if form of two integers for x
and y. If the size of the datablock is constant it is simple to receive or transmit
it:

recv(fd, buf, n, MSG_WAITALL);
send(fd, (void *) buf, n, 0);

In this example fd describes the used socket, buf is a pointer to the block, and
n the number of bytes to be sent or received.

MSG_WAITALL tells the function to wait until all n bytes are received. A problem
may occur at this point: TCP is a stream protocol and acts in this manner. It
guarantees that the bytes are in the right order. But it does not guarantee that
if m * n bytes were sent, it will be received as m * n bytes. If, for example, two
blocks with 10 bytes each were transmitted it is possibly received in one block of
20 bytes, two blocks with 5 and 15 bytes, or three blocks ...

This problem is caused by the transparency of the network stack. The higher
levels do not know what the lower ones do. In addition to this TCP buffers
incoming and outgoing data. Once the send() is called the behaviour of the
network stack depends on many things. For example: buffer size, network load,
and speed. On the receiver’s side all received data is stored in a buffer. recv()
can load already received data from this buffer or it has to wait for some data to
be received. This behaviour can be configured as mentioned earlier.

If different size blocks are possible it can be tricky to distinguish between two
blocks because there is no way to know what block-size was used. To bypass this
problem the block functions were implemented.

3 TECHNICAL APPROACH 18

The block functions are transferring blocks according the following protocol. This
list shows the transmitted parts and their order.

1. 2 Bytes*: Type: type of the datablock, can be chosen by the user of the
function.

2. 2 Bytes*: Length: length of the datablock.

3. n Bytes: The datablock itself.

*) These are two byte-values used as a 16 bit integer. For this reason these values
can vary in the range between 0 and 65535. A consequence of this is that the
maximal size of a datablock is 65535 bytes. In addition to this the integer must
be organised in the same way on both sides (GUI/server and robot). This can be
tested be the test-program src/tests/test002integer.c (appendices, section

on page .

In the programming language C data blocks are handled as pointers to the first
unit (in this case a byte). There is no possibility to know how many units need to
be processed if only the pointer is given. For this reason the block functions need
to handle the size as well. Figure [§| gives a schematic of the basic block function.

Type —> — Type
Si ze —» bl ock_send() e bl ock_receive() [— Size
Dat abl ock —»; —— Dat abl ock
kSoc:ket s-j

Figure 8: Basic Concept of the Block Functions

Implemented functions:

e block_send(): Send a datablock. The function blocks until the whole
block is transfered to the buffer. If the buffer is full, data has to be sent
first before it can continue.

e block_receive(): Receive a block. This function blocks until a whole
block is received.

e block_ifdata(): Tests if there is data in the receiving buffer. The result
of this test is returned.

3 TECHNICAL APPROACH 19

e block_receive_poll(): Starts receiving a block if there is any data in the
buffer. The function waits until the whole block is received. If there is no
data in the buffer, an error-code is returned.

e block_call(): Starts a thread (goes to background, the calling function
can continue) and waits for a block to be received. When this event occurs
a given function is called to process this received datablock.

In addition to this several subfunctions were implemented. All these functions
can be found in the file src/1ib/libcomm.c (appendices, section on page

For a detailed description with parameters and return values of the listed func-
tions please refer to the API of the network library — libcomm — in the appendices

section (page [p3).

Please refer to section [£.3.2) (page for details about the tests which were
conducted to proof the correct behaviour of this functions.

3.3.4 Line Monitoring Functions

In this project it was decided to implement a set of functions to observe the
network link (line). As explained in section (page [9) this functions should
be able to recognise if the network link becomes too slow to be used for remote
controlling. In this case a function which takes appropriate actions (stop the
robot) must be called.

The basic concept of these functions was adapted from ping. A data packet is
sent to the other side which echoes it (sends it back to the original sender). The
time between the “ping” launch and the arrival of its echo is measured. If this
time exceeds a specific value a exception-function is called.

This implementation uses a TCP socket streams (not ICMP which is used by the
original “ping”) to transmit one-byte messages. Because of the different layers
which are in use (TCP, IP, and Ethernet) the size of the data package increases
to 67 bytes (1 byte data, 32 byte TCP, 20 byte IP, and 14 byte Ethernet).

It can be helpful to distinguish between two levels of real time exceptions (time-
outs):

3 TECHNICAL APPROACH 20

1. Soft Real Time Exception: If this time was exceeded no serious conse-
quences can occur. It can be ignored but it is an indicator that something
is going wrong, possibly a forewarn. If too many of these timeouts occur
together they can become a hard real time exception.

2. Hard Real Time Exception: If this time limit is exceeded an uncorrectable
error is assumed. An appropriate action is to shut the system down (in
particular the robot) to a safe state.

The following functions were implemented:

e linemonitor () this function connects the given server on the given port
and starts sending “pings”. After one byte (used as a ping) was lunched,
the function calls poll ()E] to determine if the answer (echo) arrives within
the soft-timeout. If this was not the case a specified exception function
is called and poll() will be called again. It determines if the answer is
received within hard-timeout (hard-timeout is used as an offset value based
on soft-timeout). If this answer was received in time the function waits a
specified time before is sends the next ping. If this does not happen the
exception function is called.

In addition to this the exception-function is called if the connection breaks
down, an emergency-stop-code was received, or an invalid answer (answer
(echo) differs from request (ping)) was received. This function should run
on the dangerous side (robot side) because the real-time-timeouts are more
accurate than within the server function.

e linemonitor_server () this function is the server counterpart to the earlier
mentioned function. It opens a specified port, waits for a connection and
echoes (sends back) all received data. This function is less accurate in
recognising timeouts because the wait-time (time before the next ping is
sent by the linemonitor ()-function) has to be included. As mentioned
this function should run on the less dangerous side because of this fact.
This function does not send pings by itself, it only echoes the received data.

After one ping is echoed the function calls pol1() to determine if the next
ping arrives within wait-time plus soft-timeout. If the time-limit was ex-
ceeded it calls the exception function and repeats this procedure for the
hard-timeout. The function repeats this until it is terminated.

e linemonitor_emergencystop() sends an emergency-stop code which causes
an exceptions within the linemonitor ()-function.

4This is a system call which suspends the current function until data is received or a given
timeout is exceeded. Please refer to the 'Linux Programmer’s Manual’ for a detailed description.

3 TECHNICAL APPROACH 21

In addition to this, the function linemonitor_thread() as “background”-part of
the linemonitor ()-function was implemented. All these functions can be found
in the file src/1ib/libcomm. ¢ (appendices, section on page .

Problems with the implementation It was planned to provide the accurate
round trip time (RTT) which was taken by the “ping”. The system call select ()
which waits for an event (for example incoming data) was used to realise this. This
system call provides a possibility to request the time which the calling function
was suspended. This functionality can be used to determine an exact value for
RTT but it did not work. Maybe the function is not compatible with sockets.
There was no direct hint about this in its manual page. For this reason the system
call pol1() was used instead. This system call does not allow to determine the
exact time. It only states if the timeout was exceeded or not.

For a detailed description with parameters and return values of the listed func-
tions please refer to the API of the network library — libcomm — in the appendices

section (page [53)).

Please refer to section m (page for details about the tests which were
conducted to proof the correct behaviour of these functions.

3.3.5 Authentication

It is essential that the robot can only be controlled by an authorised person.
It must not be possible for anyone else to give commands to the robot. For
this reason it is necessary to implement some kind of authentication. This was
done by including the following functions in the library: socket_md5auth(),
getauthinfo(), and free_authinfo (). These functions were tested (please refer
to section [4.3.2] (page for details) but not used in the demonstration. Because
of the last point it was forgone to describe the used protocol in detail.

For a detailed description with parameters and return values of the listed func-
tions please refer to the API of the network library — libcomm — in the appendices

section (page [53)).

The mentioned functions can be found in the file src/1ib/libcomm.c (appen-

dices, section on page [69).

3 TECHNICAL APPROACH 22

3.4 Demonstration with a Real Robot

One objective of this project was to demonstrate the function of the library on a
real robot. The following section describes how this was done.

3.4.1 The Robot

It was decided to use a Cartesian robot with two degrees of freedom. The robot
itself is attached to a certain place but can move a platform in horizontal (x)
and vertical (y) direction. The robot is driven by a pneumatic system which is
controlled through electronic valves. There are four valves, one for each direction
in both dimensions. To move the platform in a direction the assigned valve has
to be opened. A valve opens at an operation voltage of 24V. The figure [J gives
a basic overview about the structure of the robot.

Movabl e Platform

Val ves for
Vertical Mvenent
/ Slide (active: up/down
1

passive: right/left)
Carriage (right/left)

Track for Carriage
/ Val ves for
] Hori zontal Movement

T T ==/ Base Frame

Figure 9: Basic Structure of the Robot

Unfortunately there was no interface, neither hardware nor software to control
the robot with a Linux machine. Both was implemented in this project.

3 TECHNICAL APPROACH 23

3.4.2 Hardware-Interface to the Robot

It was decided to use the parallel port to control the robot because only four actors
needed to be switched on or off. A feedback from the robot was not intended. As
mentioned earlier the valves to control the robot are driven by 24V. The valves
consume about 100mA. This value was measured under operation at 24V.

The parallel port is neither able to deliver 100mA nor 24V. It works with 5V and
can provide a few milliamperes. To connect the valves to the parallel port an
amplifier is required.

T
e : R BC337- 1|6/

i . s e D

. Parallel Bt x e 14700 | A | Uee N 1naoo7
: H _/'

i Port G\D o—— 5 Ué,
... R

Figure 10: Circuit of the Hardware-Interface

Figure shows the amplifier circuit which was designed to control the valves
by using the parallel port. If the output of the parallel port is low (0 = 0V),
Ug is zero either. If Ug is zero, no current flows into the base of the transistor.
The transistor is closed, Ucgp ~ 24V and Uy = 0V. The valve is closed. If
the output is high (1 = 5V), Ur = 4.3V, Ugg ~ 0.7V. The transistor is open:
Ucp ~ 0V and Uy =~ 24V. The valve is open. (Please refer to the following
calculations.)

Calculation of the substitution resistor for the values. Used in the simulation.
This value is only an approximation because of the inaccuracy cased by the power
supply which generates Uy and the measurement of I.

_ Uy _ 24V _
Ry = 75 = 5oz = 240Q

3 TECHNICAL APPROACH 24

Calculation of R. Assumption: parallel port is operating (Hight = 1) and gener-
ates Uy = 5V; 1mA is sufficient to open the transistor entirely.

_ Uop-Upc _ 43V _
R = =778¢ = 327 = 430002
The calculated resistor value is not available (in E1 series). For this reason it was
decided to use 4700€2. The reverse calculation:

Ug—U 4.3V
Ip =]R -]parallel—port = % = 2700 — 0.91mA

This value is acceptable.

Worst case calculation: if the transistor generates a short-circuit between C and
B, 24V on B. (Parallel port delivers zero, 0V.)

— _ 24V
IR - Iparallelfport = T IT0v —5.11mA

The parallel port should not be damaged by this current if this happens.

The diode (D) is used to protect the transistor in case of a high self-induction
voltage. The magnetic field in an inductive element depends on the current
through it and vice versa. If an inductive load is switched off, the magnetic
field (which does not disappear in an infinitely short time) forces a current. If
the transistor is closed the current cannot flow and charges are divided. A high
voltage is generated which can destroy the transistor. The diode allows the
current to flow, no charges are divided, no problem occurs. The induced current
flows in the opposite direction as the operation current. The diode allows the
current only in this direction to pass. Because of this the transistor is not bypassed
during normal operation.

The circuit as shown was built four times, one time for each valve. The main
challenge in this part of the project was to built this four amplifiers small enough
to fix them info the parallel port plug. Table 2 explains in which way the interface
to the robot is wired.

| PIN | Bit | Operation |
2 0 Move Up

3 1 Move Down
4 2 Move Right
) 3 Move Left
18 - GND*

Table 2: Connection between the Parallel Port and the Robot’s Actors.

3 TECHNICAL APPROACH 25

e %) GND is an abbreviation for Ground which describes the common 0V-
level.

Please refer to section m (page for details about the tests which were
conducted to proof the correct behaviour of this functions.

3.4.3 Software-Interface to the Robot

The software part of the interface was implemented to control the robot by using
the hardware-interface.

According to Messmer and Dembowski (2003) the basis IO-port of the parallel
port is by default located on the 10-address 0x378. The eight output bits can
be directly accessed through this address. The following eight addresses can be
used to control other features of the parallel port.

Normally these IO-ports are only accessed by kernel drivers. These drivers provide
an interface (for example, some special files in /dev) to user level programs. User
programs access the hardware only through the kernel. This is done due to
security aspects. If any program could access the hardware directly, it could
bypass the access permission management of the system. For example: copying
private files by directly accessing the harddrive.

To be able to directly access IO-ports under Linux the program has to have the
right to do this. This right is reserved for programs which run with root (system
administrator) privileges. Those programs can enable the access to the IO-ports
by calling the system-call iopl(3). After this was successful the 1O-ports can
be accessed by using inb() and outb(). inb(p) reads one byte from port p and
returns it. outb(v, p) writes the value v to the port p. (Linux Programmer’s
Manual)

To prevent collisions between the software interface and conventional Linux drivers
these drivers have to be unloaded:

e parport_pc: low level driver for the parallel port of a PC
e parport: general driver for parallel ports

e 1p: driver for Line Printers

3 TECHNICAL APPROACH 26

The software interface calculates the Az and the Ay on the basis of given target
coordinates and the stored position. The interface has to remember the last
coordinates of the robot’s platform because there is no feedback from the robot.
There is no possibility for it to request the current position of the platform.

To know the start position of the platform the interface moves the y-axis to zero
during the initialisation process. Because the position in y-direction is not known
the interface assumes y = 100%. If y is not 100%, the platform will hit its physical
limit. This does not cause any problem. This procedure is not applied to the
x-axis because it would physical damage the component if it is pushed beyond
the given limit. It is for that reason why the x-axis is not moved during the
initialisation process. x = 50% is assumed.

The interface assumes linear behaviour of the robot. This means that 50% of the
time necessary to cover the whole distance is required to cover exactly 50% of
the total range (independent from start-point and direction). Unfortunately the
robot is not accurate enough. For this reason the process of moving the robot’s
platform to some target coordinates will produce a great discrepancy between
the stored and the real values. This discrepancy increases with every movement
because of the assumption that the stored coordinates (the result of the previous
movement) were correct.

The following functions were implemented:

e interface_init() to initialise the interface
e interface_driveto() drives the robot to absolute coordinates.

e interface_stop() shuts the interface down.

Several subfunctions needed to be implemented to realize this functionality. These
functions can be found in the file src/example/interface.c (appendices, section

on page [05).

Please refer to section [£.4.2] (page for details about the tests which were
conducted to proof the correct behaviour of this functions.

3.4.4 GUI and Simulator

Some kind of user interface is necessary to control the robot. After Allegro
(Hargreaves 2004), TCL (Unknown 2004), and GTK were considered, it was

3 TECHNICAL APPROACH 27

decided to use GTK-2.0 to implement a Graphical User Interface (GUI). GTK
is the GIMP Toolkit, a set of tools and libraries to implement GUIs. GIMP is
the free GNU Image Manipulating Program. Both, GIMP and GTK are under
LGPIJ] (Blandford et al. 2004)

After a basic understanding of the functionality of GTK was gained an illustration
of the robot was implemented. This illustration is used as an input to control
the robot and as a simulation. This was realized as two GUIs: one on the server
side (guiserver) which allows to manipulate the position of the robot’s platform
by clicking on in and moving it. The other on the client/robot side (guirobot)
which shows (simulates) the current (assumed) position of the platform. There
is no possibility to influence the position of the platform on this side.

The GUIs are using the functions of the network library to transfer the commands
(destination position) over a network from the server to the robot. In addition
to this the line monitor is used to observe the quality of the network connection.
An emergency stop can be applied through the line monitor. If an emergency
stop code is transmitted or the connection performance falls below a certain level
(hard timeout occurs) the interface of the robot is shut down. The robot stops
all movements immediately.

These function can be found in the following files:

e src/example/guicommon.c (appendices, section on page [101)) draws
the sketch of the robot and calculates the new coordinates which were given
by mouse-inputs.

e src/example/guirobot.c (appendices, section on page [103]): imple-
mentation of the robot control program and the simulator. This implemen-
tation uses the interface to the robot.

e src/example/guiserver.c (appendices, section on page [110)): imple-
mentation of the remote control program. It reads commands from the user
and transmits them over the network to the guirobot.

Please refer to the section (page for a more detailed description of the
implemented GUIs.

The main challenge during the implementation of the GUIs was the re-drawing
of the simulation (on the robot’s side). A thread independent from GTK re-
ceives the new position from the server and calls the function which plots the

SGNU Lesser General Public License, please refer Free Software Foundation (1999)

4 RESULTS AND DISCUSSION 28

sketch of the robot. Because of this GTK does not recognise that something was
changed. The result of this is that the changes were not applied to the screen.
It was difficult to find an appropriate solution to this problem. Many redraw-
function do not work and the others were causing a ’Xlib: unexpected async
reply’ — a crash of the program. This happens because the GTK-thread and the
independent thread were not synchronised. This synchronisation is now restored
by calling gdk_thread_enter() before drawing the sketch of the robot.Then
gdk_window_process_all_update() forces all components to be redrawn. After
this gdk_thread_leave() unlocks the main thread. To use this functions the
gdk-library (extension of GTK for platform independence) needs to be loaded
and initialised.

Please refer to section section [4.5] (page [35]) for details about the tests which were
conducted to proof the correct behaviour of these functions.

4 Results and Discussion

4.1 Analysis of the Ping Measurement

The ping measurement was conducted twice:

1. from Mon, 01. November 2004 00:00 to Sun, 07. November 2004 23:59 —
normal school week.

2. from Mon, 26. December 2004 00:00 to Sun, 01. January 2005 23:59 —
holiday period.

The table [3| outlines the average of the results. It faces the distance to the
destination with the minimum (Min), average (Avg) and maximum (Max) values
for each destination and conducted measurement (Try). In addition to this the
number of lost pings (Lost [n]) and the percentage related to the total number
of pings (Lost [%]) is given for each destination and measurement.

The data was displayed in a diagram (on page to gain a better understanding.
The one week time span of the measurement is plotted on the x-axis with a main
interval of one day. The unit of the y-axis is milliseconds. This axis represents
the time which was required by the ping (RTT) to travel to the destination and
back. The graphs were shifted on the y-axis in order to show all destinations in

4 RESULTS AND DISCUSSION 29

Servername Distance | Try | Min | Avg | Max | Lost | Lost
Organisation [km] [ms] | [ms] | [ms] [n] (%]
www.unisa.edu.au 17,000 | 1st | 358 | 431 | 9326 | 1432 | 14.21
Uni South Australia 2nd | 350 | 370 | 712 40 | 0.40
www.harvard.edu 8,800 | 1st | 120 | 158 | 1754 16 | 0.16
Harvard University (USA) 2nd | 121 | 137 | 470 2| 0.02
www.nationalgallery.org.uk 1,000 | 1st 47 83 | 1673 15| 0.15
National Gallery of UK 2nd 48 64 | 401 31 0.03
www.tu-dresden.de 460 | 1st 21 59 | 1571 2| 0.02
Uni Dresden (Germany) 2nd | 21| 36| 374 2| 0.02
mail.hs-bremen.de Uni 2| 1st 6 39 | 1632 | 145 | 1.44
A.S. Bremen (Germany) 2nd 6| 11| 204 61| 0.61

Table 3: Overview of the Results of the Ping Measurement.

one diagram. The arrangement of the graphs is equal to the order of the above
listed destinations. The upper graphs where shifted by 6000*, 4000*, 2000*, and
1000.

*) The 0-level of these graphs were shifted to a grid line.

The first expected result of this measurement was that the time delay depends on
the distance to the destination. This can be seen in the average values (table on
page as well as in the first diagram on page [31] The minimum, average, and
maximum values on each measurement increase with the distance. The graphs
in the diagram represent this by being shifted higher according to the distance.

The second observation was that the time delay for all destinations increased to
very high values from around 8am to about noon and decreases from noon to
7pm to “normal” values. All graphs are following almost the same pattern. It
was assumed that there is a change in the time delay depending on the daytime.
However, the increases should have been shifted by the time difference to the
time zone of the destination if the destination was to causes a countable amount
of the time delay.

All curves have almost the same shape. Because of this it was assumed that
the same reason caused the time delay for all destinations. When translating
this to network-language, it means that all pings went through the same sub-
network. There is only one sub-network which matches this characteristic: the
local school and university sub-network through which the server sending the
pings is connected to the Internet. After this network the pings took different
routes.

4 RESULTS AND DISCUSSION 30

To proof this assumption, that the workload of local school and university net-
work was causing the majority of the time delays, a second measurement was
conducted. To exclude the possibility of high work loads this measurement was
conducted during the holiday period.

In comparison to the first measurement the time delay is almost stable. Except of
some peaks on Monday which might have been caused by network maintenance.

4.2 Result of the Ping Measurement

As a conclusion of the ping measurement it can be said that the Internet can be
used for remote control quite well as long as some assumptions are made:

1. The network link and the possible time delay must be explored before a
statement about its usability can be made. The levels of time delay are
changing from network link to network link and often even from hour to
hour. This has to be well considered. After this analysis the behaviour
(time delay) becomes well known. However, there is still a large random
component because it is unpredictable how the unknown part of the network
link will behave. Most of the network link is unknown.

2. There must be a possibility to observe the network link quality. Appropriate
actions must be taken if the network link becomes unusable for remote
control purposes. This is essential for safety reasons.

3. The bandwidth to the Internet must be wide enough to carry the workload
without causing unacceptable time delays. The definition of unacceptable
depends on the real time requirements of the remote control system. It
is not a good idea to share the network-access with other parties because
these parties may cause unpredictable workloads and time delays.

4. If the bandwidth is shared with some other parties, it may help to implement
some priority system.

4 RESULTS AND DISCUSSION 31

10000 ———

I Uni\;ersity of Soutlh Australia -- v:/ww.unisa.edul.au (RTT + GdOO)

Harvard University, Cambridge/USA -- www.harvard.edu (RTT + 4000)

National Gallery London/UK -- www.nationalgallery.org.uk (RTT + 2000)

Technical University Dresden/Germany -- www.tu-dresden.de (RTT + 1000)

University of Applled Science Bremen/Germany -- mail.hs-bremen.de
8000 |- B : : e : e : 1
il Ji l I ‘ \

6000

4000

Round Trip Time (RTT) of ping packet in ms

2000

O_JMH.M Al | MMM \. el il .

11/01 11/02 11/03 11/04 11/05 11/06 11/07 11/08

00:00 00:00 Date and time when the ping was sent 00:00 00:00
10000 ————— — ' ‘'™ 1 ‘' ' - [‘ ‘ ‘ T T T T+ T T
University of South Australia -- www.unisa.edu.au (RTT + 6000) ——
Harvard University, Cambridge/USA -- www.harvard.edu (RTT + 4000) ———
National Gallery London/UK -- www.nationalgallery.org.uk (RTT + 2000) ———
Technical University Dresden/Germany -- www.tu-dresden.de (RTT + 1000) ————
University of Applied Science Bremen/Germany -- mail.hs-bremen.de
2 8000 B - —
£
k3]
S
& L JU Il N . " . L
2 6000 [.
o
i)
f
& ; ; ; ; ; ;
g iDL T R TN . il
£ QOO0 [T - 1
=
=
=
o | | | | |
5
2 2000 ke ML L P e s |
T S R TNYO: L.l N
T SR - L i

0 ol R .
12/26/04 12/27/04 12/28/04 12/29/04 12/30/04 12/31/04 01/01/05 01/02/0%
00:00 00:00 Date and time when the ping was sent 00:00 00:00

Figure 11: Results of the Ping Measurements. Top: First Measurement, Normal
School Week. Bottom: Second Measurement during Holiday period.

4 RESULTS AND DISCUSSION 32
4.3 Test of the Library
4.3.1 Basic Functions

To test the basic functions (socket_bind() and socket_connect()) the test-
program src/tests/test001sockets.c (appendices, section on page
was implemented. The function socket_accept() was tested by the program
src/tests/test003block.c (appendices, section on page [119)), please refer

to section [£.3.2] (page B3).

The program testOOlsockets.c implements a server and a client to test the
network-functions on the loop-back-network? of the local machine. The server
binds a port, receives one 8192-byte-block, inverts it, and sends it back. The
client side connects to the server, sends a random-block, inverts it, receives a
second block, and compares both. If both blocks (received and local inverted
one) are equal it is assumed that the test was successful.

’ Destination ‘ Test ‘ Result ‘
127.0.0.1¢ connect to IP OK
localhost? resolution of a local name® | OK
Iblacky* resolution of a local name® | OK*
hofmeira.student.sbu.ac.uk® | Resolution by DNS/ OK*

Table 4: The Test-Results of the Basic (Socket) Function of the Network Library

*) These tests will only work, if the name of the local machine is equal to the
mentioned name.

@) This IP-address exists on every computer and points to the loop-back-
network to the local machine.

®) This name should exist on every computer and is in any case an alias of the
local machine.

¢) Uses /etc/hosts a host-IP-table to resolve the name of a computer to its IP
address.

4) Name of the local computer (on which the tests were executed).

¢) Name which is allocated to the local computer by the DNS/ of the LSBU
network.

6This network is in use if a computer establishes a connection to itself.

4 RESULTS AND DISCUSSION 33

7) DNS stand for Domain Name Server. This is a system to manage unique
global names.

4.3.2 Block Transfer Functions

The test-program src/tests/test003block.c (appendices, section on page
119)) which tests block transfer functions works in almost the same way as the
test-program for the basic socket functions. Changes are: the program connects
localhost and uses the block transfer functions to transfer blocks.

The server-side program uses and tests this functions (in the following order)

1. block_receive(),
2. block_receive_poll(),
3. block_receive_call(), and

4. socket_accept() (which calls block_receive_call())

to receive a block. block_receive_send() is used to send this block back. The
client side only uses block_receive_send() and block_receive_receive().

After these four tests are done, the authentication (functions socket_md5auth())
is tested as well. This is done by running one test and authenticating the con-
nection before the block-transfer starts.

After some troubleshooting all functions worked properly. During the test 3 and
4 the error “recv(): Bad file descriptor” occurs because the thread still tries to
receive after the client closes the connection. The thread will recognise (through
this exception) if the connection is closed and terminate. This event is docu-
mented by the message “(server: connection terminated.)”, which was perceived
during the test.

4.3.3 Line Monitoring Functions

A small test-program src/tests/tes005realtime.c (appendices, sectionon
page which only implements the linemonitor-functions was used to test these
functions. This program starts either the server or the client of the linemonitor-
system depending on the parameters which were given:

4 RESULTS AND DISCUSSION 34

e Client Mode:
run_tesO0Obrealtime server port soft_msec hard_msec wait_msec

e Server Mode:
run_tes005realtime port soft_msec hard_msec wait_msec

The client needs to know which server on which port has to be connected, while
the server only needs to know which port to bind (and wait for incoming con-
nections). Please refer to section (page for a description of the remaining
parameters.

To test if the line monitor detects when the time-limit was exceeded, the quality
of the line was lessened by overloading the connection with pingg’|and by breaking
the network connection trough unplugging it.

4.4 Test of the Interface to the Robot

4.4.1 Hardware-Interface

Before the hardware-interface was implemented the circuit was tested with Multi-
SIMT™ 2001. The result of the simulation validated the results of the calculations
in section [3.4.2] (page 23). This simulation used a substitution resistor (calculated
as Ry) to simulate the valve.

Table [l lists the measurements which were conducted to test if the hardware was
implemented properly.

After this test was completed, the valves were connected and the hardware was
tested by setting the bits on the parallel port manually. In this test the robot was
not moved, the pneumatic supply was off-line. It was tested if the valves were
switching on when a bit was set. The valves indicate this by a red light and by
switching-noise. The result of these tests was that the interface worked properly.
All valves can be controlled.

"The ping-program can be configured to send pings without the default time delay of one
second. This was used to overload the network link.

4 RESULTS AND DISCUSSION 35

Test \ Result ‘

Connection from +24V to the valves OK (low-resistance)
Connection from +24V to other components (Valves | OK (none)

not connected)
Connections between the GNDs OK (low-resistance)
Connection between parallel output bits and GND | OK (high-resistance)
(both directions because of the diode in the transis-
tor)

Connection between parallel output bits and the input | OK (high-resistance)
of the valves (C of transistor), both directions
Connection between parallel output bits OK (none)
Connection between valve inputs (Cs) OK (none)

Table 5: Results of the First Test of the Hardware-Interface.

4.4.2 Software-Interface

The software-interface was tested by monitoring the bits of the parallel port. At
this time the hardware-interface was not connected. After some troubleshooting
the interface seemed to work properly.

To be able to run the final test on the entire interface a test-program (src/
example/testO0linterface.c) (appendices, section on page was writ-
ten. This program initialises the interface (interface_init()) first. After this
it reads (x,y) coordinates from the keyboard and hands them over to the inter-
face (interface_driveto()). After a few mistakes were eliminated the interface
worked properly.

The major mistake in this phase of the development was a misinterpretation of
the parameter of usleep O] Milliseconds instead of microsecond were used. As
mentioned earlier, the movements of the robot’s platform are not linear. For this
reason the interface does not work accurately.

4.5 Test of the GUI and the Simulator

The implementation and the testing of the GUI were running almost at the same
time. All newly included details were checked when they were ready. These tests
were conducted by the author personally because there is no point in writing

8System-call which suspends the calling function for a given time (unit: microseconds).

5 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 36

a test-program to test the interface to the user. The user has to decide if the
interface works properly or not.

The GUI was implemented and tested in these steps:

Open a (program) window and draw the sketch of the robot in it.

Read the commands from the user. The new position of the robot’s platform
can be entered by moving the sketch (with the mouse) on the screen.

Transmit the new coordinates over a network to the other side and apply
them to the simulated sketch.

Apply the new coordinate to the robot by using the interface.

All these steps are fully implemented now. The system works.

5.1

Conclusions and Recommendations for Fur-
ther Work

Project Conclusions

During this project the possibility of using the Internet for remote control-
ling of robots was re-examed. This was done by conducting an analysis of
an example connection over the Internet. One conclusion has been drawn
that the majority of the time delays (the most important restriction) were
caused by the local network but not by the Internet. This theoretical result
may be useful to future study in this field.

Several approaches to the restrictions were studied and a promising method,
the line monitor, was implemented.

This project implements a network library which makes it possible to control
a robot over the Internet. This library was demonstrated on a real robot by
implementing a Cartesian robotic system. It includes a server side which
reads commands from the user and transmits them through the Internet to
the robot’s side, where the commands are received to control the robot.

5 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 37

5.2

Personal Conclusions

e The three most challenging aspects for me during this project were to organ-

5.3

ise myself (take responsibility), to document my work well (write loghbook
and reports), and to do this in English. I have gained the confidence to
pursue future studies in the proper ways.

After completing this project I have realised that an aim and plan is vital
for a project. The good plan will help the student to elaborate the study
direction.

Recommendations for Further Work

Porting the library to other platforms. All system calls which were used
should be available within GDK (platform independent development library,
extension of GTK). For this reason it should be possible to use this library
and make the network library platform independent. But this has to be
well considered because of the performance. It may not be recommendable
to use a platform independent implementation on the robot’s side because
of the overhead which is caused by this independency. If the robot uses
an embedded system with Real-Time-Linux, maybe there are not enough
resources to use GDK. On the other side — the server side — this is completely
different because of the performance of today’s computer.

Implementation of other strategies to bypass the random time delay. This
can help to make the library more useful for additional applications.

Students spent a lot of work and time to produce reports like this. It might
be a great contribution to provide them on the Internet and it could help
a lot of other people.

6 BIBLIOGRAPHY AND REFERENCES 38

6 Bibliography and References

Addison, D. (2001) Embedded Linux applications: An overview

[Online| Available at
http://www-106.1ibm.com/developerworks/linux/library/l-embl.html
(accessed 20. October 2004)

Andreu, D.; Fraisse, P.; Roqueta, V.; Zapata, R. (2003) Internet enhanced
teleoperation toward a remote supervised delay regulator IEEFE International
Conference on Industrial Technology 10-12 December 2003 p663-668 volume 2
[Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/9059/28746/
01290733.pdf (accessed 9. December 2004)

Ball, P.; Farnham, J; Iraca, S. (1999) Transmission Control Protocol /Internet
Protocol TCP/IP [Online] Available at
http://cne.gmu.edu/itcore/internet/tcpip/tcpip.html

(accessed 11. December 2004)

Belousov, I. (2004) Internet Robotics [Online] Available at
http://www.keldysh.ru/pages/i-robotics/operidea.html
(accessed 26. November 2004)

Berkeley Distribution (1996) Ping Manual Page [Online] Available at
http://snowhite.cis.uoguelph.ca/course_info/27420/ping.html
(accessed 12. November 2004)

Blandford, J; Clasen, M; Janik, T; Lillqvist, T; Quintero, F.M.; Ri-
etveld, K; Sandmann, S; Taylor, O; Wilhelmi, S (2005) GTK+ — The
GIMP Toolkit [Online] Available at

http://www.gtk.org/ (accessed 28. March 2005)

British Standard (1992) Industrial robots — Part 6: Recommendations for
safety; BS 7228-6:1992; EN 775:1992; ISO 10218:1992 [Online| Available at
http://bsonline.techindex.co.uk/ (accessed 28. October 2004)

Chen, Y.-M.; Chen, Y.-B. (2004) Research reform on real-time operating
system based on Linux WCICA 2004. Fifth World Congress on Intelligent Con-
trol and Automation 5-19. June 2004 p3916-3920 Volume 5 [Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/9294/29576/
01342230.pdf (accessed 20. October 2004)

6 BIBLIOGRAPHY AND REFERENCES 39

Elhaji, I.; Tan, J.; Xi, N.; Fung, W.K.; Liu, Y.H.; Kaga, T.; Hasegawa,
Y.; Fukuda, T. (2000) Multi-site Internet-based cooperative control of robotic
operations. Proceedings 2000 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2, 31. Oct - 5. Nov 2000 p826-831 [Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/7177/19309/
00893121.pdf (accessed 20. October 2004)

Engelen, P. (2004) GTK-Drawing Demo on Win32 [Online| Available at
http://mail.gnome.org/archives/gtk-app-devel-1list/2004-0ctober/
msg00105.html (accessed 28. March 2005)

Fairhurst, G. (2004) Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) [Online| Available at
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/csma-cd.html
(accessed 11. December 2004)

Feibel, W. (1990) Using ANSI C in Unix. Berkeley: Osborne McGraw-Hill

Forouzan, B. A. (2001) Data Communication and Networking, 2"¢ edition.
New York: McGraw-Hill.

Free Software Foundation (1999) GNU Lesser General Public License.
[Online] Available at
http://www.gnu.org/copyleft/lesser.html (accessed 28. March 2005)

Free Software Foundation (2004) The Free Software Definition
[Online| Available at
http://www.gnu.org/philosophy/free-sw.html (accessed 28. March 2005)

Gale, T.; Main, I. (2000) GTK+ 1.2 Tutorial: Chapter 25. Scribble, A Simple
Example Drawing Program [Online] Available at
http://www.johnmalone.org/gtk/tutorial/sec-eventhandling.html
(accessed 28. March 2005)

Guthrie, J (2004) Understanding GPS Coordinates [Online] Available at
http://www.co.lincoln.wa.us/GIS%20Data/Understanding%20GPS%20Coordi
nates.pdf (accessed 04. February 2005)

6 BIBLIOGRAPHY AND REFERENCES 40

Han, K.-H.; Kim, S.; Kim, Y.-J.; Lee, S.-E.; Kim, J.-H. (2001) Imple-
mentation of Internet-based personal robot with Internet control architecture.
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Au-
tomation 2001 p217-222 volume 1 [Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/7423/20179/
00932556.pdf (accessed 20. October 2004)

Hargreaves, S. (2004) Allegro — A game programming library.
[Online] Available at
http://www.talula.demon.co.uk/allegro/ (accessed 28. November 2004)

Heesch, D. (2004) Doxygen: Introduction [Online| Available at
http://www.stack.nl/ dimitri/doxygen/ (accessed 20. December 2004)

IBM Corporation (1995) TCP/IP Tutorial and Technical Overview: Ports and
Sockets [Online] Available at
http://www.auggy.mlnet.com/ibm/3376c210.html (accessed 22. December 2004)

Kennington, A (2000) Alan Kennington’s recommendations and suggestions
[Online| Available at
http://www.topology.org/reco/ (accessed 04. February 2005)

Kernighan, B. W.; Ritchie, D. M. (1988) The C Programming Language,
274 edition. London: Prentice Hall ISBN 0-131-10362-8

Kozierok, C. M. (2004) The TCP/IP Guide [Online| Available at
http://www.tcpipguide.com/free/index.htm (accessed 12. November 2004)

Liu, P. X.; Meng, M.Q.-H.; Gu, J.; Yang, S.X.; Hu, C. (2003) Control
and data transmission for Internet robots Proceedings ICRA 2003. IEEE Interna-
tional Conference on Robotics and Automation 14-19 September 2003 p1659-1664
volume 2 [Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/8794/27834/
01241832.pdf (accessed 21. October 2004)

Liu, Y.; Chen, C.; Meng, M. (2000) A study on the teleoperation of robot
systems via WWW Canadian Conference on Electrical and Computer Engineer-
ing 7-10. March 2000 p836-840 volume 2 [Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/6844/18402/
00849583.pdf (accessed 20. October 2004)

LRAV/AVDAY (1985) Computer in Control, 01: Introducing the Robot. [Video]

6 BIBLIOGRAPHY AND REFERENCES 41

Maptech, Inc. (2005) Online Maps: Map Server [Online] Available at
http://mapserver.maptech.com/ (accessed 04. February 2005)

Mattis, P. (1998) The GIMP Toolkit (GTK Documentation) [Online] Available
http://www.csa.iisc.ernet.in/old-website/Department_Resources/

Hypertext/gtk/gtk_toc.html (accessed 28. March 2005)

McKerrow, P. J. (1991) Introduction to Robotics. Singapore: Addison-Wesley.
ISBN: 0-201-18240-8

Messmer, H.-P.; Dembowski, K (2003) PC-Hardwarebuch (German: PC-
Hardwarebook) 7% edition. Munich: Addison-Wesley. ISBN 3-827-32014-3.

Mitchell M.; Oldham J.; Samuel A. (2001) Advanced Linux Programming,
New Riders Publishing [Online] Available at
http://docs.linux.cz/programming/other/ALP/
advanced-linux-programming.pdf (accessed 20. December 2004)

Plauger, P.J.; Brodie, J. (1989) Standard C - A Reference. London: Prentice
Hall. ISBN 0-134-36411-2

Postel, J. (1981) RFC 792 — Internet Control Message Protocol
[Online] Available at
http://www.freesoft.org/CIE/RFC/792/index.htm

(accessed 11. November 2004)

Sato, H.; Yakoh, T. (2000) A real-time communication mechanism for RT Linux
IECON 2000. 26th Annual Conference of the IEEFE Industrial Electronics Society
22-28. October 2000 p2437-2442 volume 4 [Online] Available at
http://0-ieeexplore.ieee.org.lispac.lsbu.ac.uk/iel5/7662/20956/
00972379 .pdf

(accessed 19. October 2004)

Schwarzenbach, J.; Gill, K.F. (1992) System Modelling and Control, 3rd
edition. London: Edward Arnold. ISBN: 0-340-54379-5

Unknown (2004) TCL Developer Xchange: tcl/tk [Online] Available at
http://www.tcl.tk/software/tcltk/ (accessed 28. November 2004)

Wilson, G. (2001) OSI Model Layers [Online] Available at
http://www.geocities.com/SiliconValley/Monitor/3131/ne/osimodel.html
(accessed 11. December 2004)

7 PROJECT PLANNING 42

7 Project Planning

This section compares the planing of the project with its actual realisation. After
the work breakdown structure is given, the final version of the Gantt char is
shown. This is followed by the comparison of the Gantt charts and action plans
from the beginning, the middle, and the end of the project. In the end the
milestones and some explanations about the project and it’s planning are given.

7.1 Work Breakdown

Fi nal Year Project
Communi cati on
Server <-> Robots

Proj ect Docunentation | |Theoretical Wor k | |Derm with Real Robot | |Li brary (Server&Robot)l |GJ| ! Sinul ator

I'nterim Report ‘ Litarature Search ‘ —{Inler!ace Robot <--> Library }7

Presentation ‘ Ping Measurenent ‘ —{ Progr anmi ng ‘ —{ Progr anmi ng ‘ —{ Progr anmi ng ‘

Feasibility Study ‘ —{ Document ati on (Source) ‘ —{ Document ati on (API) ‘ —{ User's Manual ‘

Final Report ‘

7.2 Gantt Chart of Final Stage

43

Jlom pauueld
Jaom pays|dwod

o1] 6 | z [sz|st|T1] v [82]12|v1] £ [8z]T2[v1] £ [1€]vz|LT]0T] € [22]0Z]€T] 9 [6Z|2Z|ST| 8 | T [SZ[8T|TT] ¥ [£Z[¥2°M UBAIB By Aepuop Jo @1eq

S 14 € Z T Z1 1T 0T 6 [YIUOW
[1] poliad BAIA

(r0°'9Z @nl1) uoday |euld

(r0'¢t °@nl) yoday |eul4 yeiq uo ydoeqpasd

(r0'80 14) IO/ [ed130e4d J0 uona|dwo)

(€0°9T POM) uoneuasald

(€0°80 ©nl) poday |eul4 yeiq

(TT'0€ @n1) uoday wiIau| uo yoeqpas{

(TT°60 3n1) uoday wiiau|

(0T°80 H4) w04 Juswabueuly 129(oid

saujjpeaa
S 14 € Z L SOUO031SIJIN

|| 101B|NWIS / 83eua3U] 43S p|Ing

Aleiqi1 - 30qoy axepua3u|

Aieiqr piing

a1n3dna3s diseg ubisag

uoneuasald asedald
juawainseal buid / Apmis Aljigiseaq

yoJeas aimesann

SOARI3[qO/wWiy 33(oad Buues|d

|| Voday |euld
poday wau|

€T|CT|TT|OT| 6|8 | 493se3 | L |9 | S|V | €| C | T |ST|PT|ET|'BUWASUYD|CT|TTIOT| 6|8 |L |9 |S |V |€E|C|T S)sel
J2gUINU 99M-Z 1931SaWas JaguInu oaMm-T 191SoWas

7 PROJECT PLANNING

uollesijeay [en1oy — a|npay2s 10alold ayL

7 PROJECT PLANNING 44
7.3 Project Schedule
7.3.1 Comparison: Pre and After Interim Stage
Action Plan Pre Interim Report
Estimated Duration
Task in Weeks Precedence
A | Interim Report 3 -
B | Final Report 15 Feedback A
C | Clearing Project Aim/Objectives 5 -
D | Literature Search 8 -
E | Feasibility Study 3 C
F | Prepare Presentation 2 C,(E)
G | Interface to Robot 4 C
H | Design Structure 4 C
I | Build Library 8 (G)
J | Write Documentation (Library) 9 (I)
K | Build User Interface 7 (I)
L | Build Robot Simulator 7 (I)
M | Write Documentation (UI/Simulator) 5 (K),(L)
N | Interface between Robot and Library 3 G,(M)
Action Plan After Interim Report
Estimated Duration
Task in Weeks Precedence
A | Interim Report 3 -
B | Final Report 8 Feedback A
C | Clearing Project Aim/Objectives 5 -
D | Literature Search 9 -
E | Feasibility Study / Ping Measurement 8 C
F | Prepare Presentation 2 C,(E)
[| Build Library 4 C
K | Build User Interface 5 (I),(N)
L | Build Robot Simulator 5 (K)
N | Interface between Robot and Library 3 (I)

45

7 PROJECT PLANNING

310M pauuejd

SJom pazajdwio)d

-

101e|NWIS 1090y p|ing

2oepa1u] J9sSN plIng

AJeiqi] —30qoy 2deudiu|

Aieaqr pjing

24n3onJ31s diseg ubisag

uoljeluasald aiedaid

juawainsea buld / Apnis Ajljiqiseaq

yoJeas aunjesan

SOAI109[qO/WIy 109l0dd bulies|d

uoday [euly

€1

4

i1

01

6

8

FENLE]

L

9

S

13qWNU %33M-Z J3]1S3Was

ST

Vi

€1

"eunsuud

4"

It

0t

6

8

yoday Wiy

L{9|S|V|E

13qWNU %29M-T J3]1S3Was

syse]

sewsliy) - ajnpayas 1afoid ayL

Adeiq] pue 1000y U9aMiaq adepaiu|

(JO3e|NWIS/|N) UOREIUAWIND0Q SILM

101e[NWIS 10q0Y p|Ing

3oepa1U| Jasn pling

(AJeaqii) uoneiusawndoq SIUM

Aieaqry pjing

24n1onJ1S ubisaqg

10q0y 03 2Jeuaiu|

uoneluasald aiedaid

Apms Aujiqisesy

ydJeas alnjelalln

SsaA3da[qo/wly 193lold Bules|d

poday |eutly

€l

4

It

01

6

8

Jaiseqg

L

9

S

Joquinu >ooMm-¢ J2]1SaWoS

ST

Vi

€l

eunsuyd

4"

It

0T

6

8

uoday wiau|

L{9|S|V|E

Jogquinu doom-T J9]1SoWDS

syse]

Hoday wiiajul — 9|npayds 103loud ayl

7 PROJECT PLANNING 46
7.3.2 Comparison: After Interim Stage and Final Stage
Action Plan After Interim Report
Estimated Duration

Task in Weeks Precedence

A | Interim Report 3 -

B | Final Report 8 Feedback A

C | Clearing Project Aim/Objectives 5 -

D | Literature Search 9 -

E | Feasibility Study / Ping Measurement 8 C

F | Prepare Presentation 2 C,(E)

I | Build Library 4 C

K | Build User Interface 5 (D),(N)

L | Build Robot Simulator 5 (K)

N | Interface between Robot and Library 3 (1)
Final Action Plan

Estimated Duration

Task in Weeks Precedence

A | Interim Report 3 -

B | Final Report 8 Feedback A

C | Clearing Project Aim/Objectives 5 -

D | Literature Search 9 -

E | Feasibility Study / Ping Measurement 8 C

F | Prepare Presentation 5 C,(E)

[| Build Library 6 C

K | Build User Interface / Simulator 6 (I),(N)

N | Interface between Robot and Library 5 (I)

47

7 PROJECT PLANNING

3Jom pauueld

JJom paiajdwo)

=

—

Joje|nwis / @depau| Jasn pjing

Aeiqi] —10q0y adeuaju]

Aleiqi piing

aJnyonas diseg ubisaqg

uoeUdSald aJedald

juawainses|y buld / ApmsS Alljiqiseaq

yoJeas ainjesayn

saAa(qo/wiy 38lold buues|d

poday |euld

€l

4"

T

—

0T/ 6 /8] 91se3 [L |9[S |V
laguinu)Yoam-g 191SaWas

m
N
-

ST

i

€1 ewisuyd
laguinu Yoam-T 191SawWas

4

IT|0T

6

8

uoday wiaiu|

L]19|S|V|€E|C

sysel

uonesijeay |en1ay - ajnpayds 10alold ayl

Joje|nwis 10qoy pling

9oep23u] Jasn pling

AJeiqi] —310goy adeaiu]

Aiesqn piing

2Jn3dnas diseg ubisaqg

uolnejuasald asedald

juswainsea buid / Apms Ajljiqiseaq

yoJeas ainjelain

S9A1123(qO/wWiy 33loud Bules|d

uoday |euld

€l

4

i1

0t

6

13qWNU Y9aM-Z 19159W8aS

8

FECE]

L{9]S|V|E|C|T|ST

14"

€1

‘ewnsuyd

[

i1

o1

6

8

uoday wiuaiu|

L]9|S|V|€E|C

13qWNU Y9aMm-T 191S9WaS

sysel

sewlsiUy) — a|npayds 193loid ayL

PROJECT PLANNING 48

e Precedence (in action plans):

X: Task X has to be completed before the task can start.

(X): Task X has to be semi-completed before the task can start. That
means that task X has to be in a state in which it is possible to start
a new task simultaneous. Tasks which run simultaneous can have an
influence among each other.

e The scale which was used to measure the duration (weeks) is inaccurate
because of the fact that the work load was not allotted constantly over the
project time. Often the time was shared between different tasks which were
conducted at the same time. These tasks included project tasks, other study
related tasks, and private tasks. However, it can be said, in all conscience,
that at least 300 hours were spent in this project.

e The holidays were scheduled as a reserve in case that the project-work would
take longer than expected. During the project it was decided to move some
work into the holiday periods.

e [t was chosen to condense the number of tasks to simplify the project plan-
ning. During this process the “write documentation”tasks were included
into the corresponding programming (building) task, the design of the struc-
ture was embedded into the library building process, and the “Interface to
Robot” development task was included in the task “Interface Robot — Li-
brary”.

e The development of the “Interface to Robot” was moved from the beginning
of the project to its middle because the decision about which robot should
be used for the demonstration was delayed.

e After beginning the development of the GUI it was decided to use almost
the same GUI for both sides. One (server-side) to input the new position
of the robot’s platform and the other (robot’s side) to show (simulate) the
behaviour of the robot. For this reason, both development phases were
condensed to one.

7 PROJECT PLANNING 49

7.4 Milestones

1. On Tuesday, 9 November 2004, the project is defined by now and has been
started. This is reflected by the interim report which is completed and
handed in.

2. At this point (9" week of first semester) of the project it is possible to
control the robot with a little experimental program. The interface to the
robot is well understood.

3. In week 14 (first semester) an early simulation with library, user interface
and simulator shows the basic function of the system.

4. At the end of week seven (second semester) the system works. It is now
possible to control the robot over the Internet by using the library. This
will be demonstrated. The simulation works as well.

5. On Tuesday, 26 April 2005, the project and final report are completed and
handed in.

The milestones one and three were met. The last milestone will be also be met
in time.

The milestones two and four were missed. As mentioned earlier the decision about
the robot was delayed. This caused the missing of the second milestone. The
fourth milestone was missed by almost three weeks because of the fact that the
work was delayed by some neglected factors. The development of the interface to
the robot was delayed. The time which was necessary to prepare the presentation
was underestimated. And external events like exams interfered with the initial
plan.

APPENDIX A: USER’S MANUAL GUI FOR ROBOT AND SERVER 50

Appendix A: User’s Manual GUI for Robot and
Server

A.1 Both Programs (guirobot and guiserver) explained

e guirobot: This is the robot control program. It can run in two modes:

— Simulation only: If no access to the hardware is possible (the program
does not run under root (with system administrator rights), access to
the IO-ports is not possible. The program recognise this and shows
(simulates) the robot’s movements only on the screen.

— Simulation and Controlling: The [IO-ports can be accessed, the inter-
face is fully active. The program will show the new position of the
robot on the screen and drive the robot to this position.

e guiserver: This is the server or the remote control station. It allows the
user to input the new position of the robot. This new position will be
transmitted to the guirobot by using 1ibcomm.

The robot is shown (simulated) in both programs. The black rectangle pictures
the platform of the robot which can change its position.

The guirobot has to be started first. In the second step the guiserver connects
to the guirobot. After this connection is established, the guirobot connects
to the guiserver to monitor the stability and the speed of the line with the
linemonitor (). Both programs are looking almost identical:

Robot . Server- User Inte...V &

Emergency Stop Emergency Stop

Figure 12: Both Programs guirobot (left) and guiserver (right) directly After
Startup.

Their lookout (title line, buttons) depends on the used window manager and its
configuration. In this case AfterStep is in use.

APPENDIX A: USER’S MANUAL GUI FOR ROBOT AND SERVER 51

The difference between these two Graphical User Interfaces (GUIs) is that only
the guiserver allows manipulations of the position of the robot’s platform. The
guirobot shows the actual position and drives the platform of the robot to the
required position if the interface is active and can access the hardware.

A.2 DManipulate the Position of the Robot’s Platform

Click (with the left mouse-button) on the robot’s platform (sketched as black
rectangle) and move it with held mouse button to the new position. Release the
button. An example of the result of this can be seen in the following screenshot:

Rohot », Server - User Inte... 'V &

Emergency Stop Emergency Stop

Figure 13: Both Programs guirobot (left) and guiserver (right) After a Move-
ment of the Robot.

A.3 Stopping the Robot

Both programs are able to stop all movements of the robot by clicking “Emergency
Stop”. This emergency stop is also executed if the window is closed or the program
receives a terminate signal.

In addition to this the linemonitor stops the robot if the the connection breaks
down or if the server does not answer within a given time period.

A.4 Starting both Programs, Parameter

As mentioned the guirobot has to be started first. This program receives the
following parameters:

APPENDIX A: USER’S MANUAL GUI FOR ROBOT AND SERVER 52

guirobot port-to-bind soft_msec hard_msec wait_msec

e port-to-bind describes the port on which guirobot has to listen for con-
nections from the guiserver. The guirobot will connect to the home ad-
dress of the guiserver and port-to-bind + 1 to establish a linemonitor
connection.

e soft_msec tells the program how long it has to wait before a soft-timeout
is assumed. A soft-timeout causes a message on the terminal. The value is
specified in milliseconds.

e hard_msec tells the program how long it has to wait after a soft-timeout
has occurred, before a hard-timeout is assumed. A hard-timeout causes
an emergency-stop of the robot. The hard-timeout is assumed if there
is no response after soft_msec + hard_msec. The value is specified in
milliseconds.

e wait_msec specifies the time which has to past after the last response was
received before a new enquiry is sent. The value is specified in milliseconds.

The interface initialises the robot. That means driving the robot’s platform to
the (x=50,y=0) coordinates. The interface assumes that the robot is already in
the position x=50. The x-position will not change. However, this takes some
time. The program is ready when the window is displayed.

After the window is displayed the guiserver should be started with the following
parameters:

guiserver robot-address port soft_msec hard_msec wait_msec

e robot-address specifies the address of the computer on which the guirobot-
program runs. This can be an IP-Address (Internet Protocol Address) or
the name of the computer which must be resolvable by the used Domain
Name Server (DNS).

e port correlates to port-to-bind from guirobot and must be the same.
e soft_msec correlates to soft_msec from guirobot and should be the same.
e hrad_msec correlates to hard_msec from guirobot and should be the same.

e wait_msec correlates to wait_msec from guirobot and should be the same.

APPENDIX B: API OF THE NETWORK LIBRARY

Appendix B: API of the Network Library

libcomm.c(3) libcomm.c(3)

NAME

libcomm.c - Main part of libcomm.

SYNOPSIS
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/poll.h>
#include <string.h>
#include ’libcomm.h’
#include ’mdb5.h’
#include <pthread.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>

Functions

void socket_accept_thread (struct LIBCOMMPTHREADP
*1ibcommpthreadp)
This is a part of socket_accept() and must not called
from the user.

int socket_accept (int sockport, int id,
void(*socket_accept_do)(int fd, int id, char *pip,
struct sockaddr_in their_addr))
Start a new thread, wait for connections and start
socket_accept_do() when someone connects.

int socket_bind (int port, int cqueue)
Bind a socket to a port (Server side).

int socket_connect (char *host, int port)
Connect a TCP-stream to a server (Client side).

char * block_random (char *buf, int size)
Get random numbers/bytes.

void threadl (struct LIBCOMMPTHREADS

93

APPENDIX B: API OF THE NETWORK LIBRARY 54

*libcommpthreads)

This is a part of block_call() and must not called
from the user.

int block_call (int fd, int id, int term,
void(*block_call_do)(int fd, int id, unsigned int
type, char *buf, unsigned int size, int term),
void(*block_call_term)(int fd, int id))
Waits in a new thread for a datablock to be received
and calls the function block call do() if this event
occurs or block call term() when the connection
terminates.

int block_ifdata (int fd)
This function tests if new data is available to read
on a stream.

char * block_receive_poll (int fd, unsigned int *type,
char *buf, unsigned int *size, unsigned int maxsize,
int term)
Test if is there data available on the socket’s input
buffer and starts receiving a block if there is.

char * block_receive (int fd, unsigned int *type, char
*buf, unsigned int *size, unsigned int maxsize, int
term)
Receive a block (composition of: type, size of
datablock and datablock) from a socket.

int block_receive_integer (int fd, unsigned int *recvi)
Receive an integer (two bytes; 16Bit) from the socket.

int block_receive_nbytes (int fd, char *buf, int n)
Receive n bytes from socket.

int block_send (int fd, unsigned int type, char *buf,
unsigned int size)
Send a block (composition of: type, size of datablock
and datablock (buf)) to a socket.

void free_authinfo (struct AUTHINFO *destroy)
Free the memory space which is used by an AUTHINFO
structure.

int socket_mdbauth (int fd, char *netname, char *name,
struct AUTHINFO **plocallogin, struct AUTHINFO
*premotelogin)
Do both side authentification.

AUTHINFO * getauthinfo (char *netname, char *name)
Load authentication informations (netname, name,
passwd, keyencrypt, keydecrypt) from authfile.

void linemonitor_server_thread (struct

APPENDIX B: API OF THE NETWORK LIBRARY

LINEMONITOR_THREAD_DATA
*linemonitor_thread_data)

Thread used by linemonitor_server() NOT for direct

usage.

int linemonitor_server (int port, int soft_msec, int

hard_msec, int wait_msec,

void (*linemonitor_exception)(char *server, int port,

int type))

Monitor if the ’line’ is fast enough: Server

Application.
void linemonitor_emergencystop (int sock)
Sends an ’Emergency Stop’ to the client’s side,
linemonitor() will produce an ’Emergency Stop’
exception (type 4).
int linemonitor_thread (struct
LINEMONITOR_THREAD_DATA
*linemonitor_thread_data)
Thread used by linemonitor() NOT for direct usage.
int linemonitor (char *server, int port, int soft_msec,
int hard_msec, int wait_msec,
void(*linemonitor_exception)(char *server, int port,
int type))
Monitor if the ’line’ is fast enough: Client/Robot
Application.

DETAILED DESCRIPTION

Main part of libcomm.

FUNCTION DOCUMENTATION
int block_call (int fd, int id, int term, void(*
block_call_do)(int fd, int id, unsigned int type, char
buf, unsigned int size, int term), void(
block_call_term)(int fd, int id))

Waits in a new thread for a datablock to be received and
calls the function block_call_do() if this event occurs or
block_call_term() when the connection terminates.
Parameters:

fd (int) descriptor of socket

id (int) arbitrary id of background process / thread

APPENDIX B: API OF THE NETWORK LIBRARY o6

term

(int) O0: do not terminate the buffer, 1: terminate
the buffer by appending a 0x00.

block call _do

(int fd, int id, unsigned int type, char *buf,
unsigned int size, int term) (function) this
function is called if a datablock was received. fd,
id and term are the same as in block_call(). type
describes the type of the received datablock, buf
is a pointer to this datablock and size is the
number of bytes of the datablock

block call _term

(int fd, int id) (function) this function is called
if the connection terminates. fd and id are the
same as in block_call().

Returns:
If all right zero otherwise non zero.

int block_ifdata (int fd)

This function tests if new data is available to read on a

stream.

Parameters:

£d

(int) discriptor of stream to test

Returns:

(int) 1: Data to read; 0: No data to read

char* block_random (char * buf, int size)
Get random numbers/bytes.

This function reads random numbers/bytes from /dev/urandom
and stores this bytes in a buffer.

Parameters:

buf

size

(char *) in which the bytes will be stored. If this
parameter is equal to NULL dynamic memory will be
allocated.

an integer, specifies ths size of the buffer (the

APPENDIX B: API OF THE NETWORK LIBRARY 57

number of the random bytes). WARNING: If buf is not
equal to null, n*(size) bytes will be stored in
this buffer without any check of ths size of this
buf.

Returns:
(char *) a pointer to the buffer in which the random
bytes are stored.

char® block_receive (int fd, unsigned int * type, char * buf,

int

unsigned int * size, unsigned int maxsize, int term)
Receive a block (composition of: type, size of datablock
and datablock) from a socket.

Waits for a block to be received completely. WARNING: The
integers (type and size; excluding fd) are only 16 bit
values (0 - 65535).

Parameters:

fd (int) descriptor of socket

type (unsigned int *) pointer to integer, this value can
be used as buyer’s option

buf (char *) buffer for datablock. Memory will be
allocated if this parameter is equal to null.

size (unsigned int *) pointer to integer in which the
size of the received datablock is saved.

maxsize
(unsigned int *) describes size of buf. This
parameter will be ignored if buf is equal to null.

term (int) O0: do not terminate the buffer, 1: terminate
the buffer by appending a 0x00.

Returns:
(char *) pointer to buffer which contains the received
datablock; NULL if fail.

block_receive_integer (int fd, unsigned int * recvi)
Receive an integer (two bytes; 16Bit) from the socket.

APPENDIX B: API OF THE NETWORK LIBRARY

Parameters:
fd (int) descriptor of socket

recvi (unsigned int *) pointer to integer in which the
received integer is saved.

Returns:
(int) 2: OK; -1: fail

int block_receive_nbytes (int fd, char * buf, int n)

Receive n bytes from socket.

Parameters:

fd (integer) descriptor of socket

buf (char *) buffer for saving the received bytes
n (integer) number of bytes to receive

Returns:
(integer) n: OK; -1 fial

char* block_receive_poll (int fd, unsigned int * type, char *

buf, unsigned int * size, unsigned int maxsize, int term)
Test if is there data available on the socket’s input
buffer and starts receiving a block if there is.

WARNING: The integers (type and size; excluding fd) are
only 16 bit values (0 - 65535).

Parameters:

fd (int) descriptor of socket

type (unsigned int *) pointer to integer, this value can
be used as buyer’s option

buf (char *) buffer for datablock. Memory will be
allocated if this parameter is equal to null.

size (unsigned int *) pointer to integer in which the
size of the received datablock is saved.

APPENDIX B: API OF THE NETWORK LIBRARY 29

maxsize
(unsigned int *) describes size of buf. This
parameter will be ignored if buf is equal to null.

term (int) O0: do not terminate the buffer, 1: terminate
the buffer by appending a 0x00.

Returns:
(char *) pointer to buffer which contains the received
datablock; NULL if fail; 1 if no data available.

int block_send (int fd, unsigned int type, char * buf,
unsigned int size)
Send a block (composition of: type, size of datablock and
datablock (buf)) to a socket.

The function blocks until the whole block is transfered to
the buffer. If the buffer is full, data has to be sent
first. WARNING: The integers (type and size; excluding fd)
are only 16 bit values (0 - 65535).

Parameters:
fd (int) descriptor of the socket to which buf should
send

type (unsigned int) This value can be used as buyer’s
option

buf (char *) which should be send

Returns:
number of sent bytes, -1 if an error is occurt.

void free_authinfo (struct AUTHINFO * destroy)
Free the memory space which is used by an AUTHINFO
structure.

Parameters:
struct AUTHINFO x) pointer to structure to destroy.

struct AUTHINFO* getauthinfo (char * netname, char * name)
Load authentication informations (netname, name, passwd,
keyencrypt, keydecrypt) from authfile.

APPENDIX B: API OF THE NETWORK LIBRARY 60

Parameters:

netname
(char *) specify the network name (may IP). NULL
not specified.

name (char *) specity the login name. NULL not
specified.

Returns:
(struct AUTHINFO *) the first entry from authfile
which matches network name OR login name. If both
values are NULL, the first entry of the authfile is
given back.

int linemonitor (char * server, int port, int soft_msec, int
hard_msec, int wait_msec, void(*
linemonitor_exception)(char *server, int port, int type))
Monitor if the ’line’ is fast enough: Client/Robot
Application.

This function opens a socket stream, sents pings/bytes and
wait for them to come back. The soft-timeout will called
after soft_msec is timeouted. The hard-timeout will called
after soft-timeout was called AND hard_msec is timeouted.
wait_msec specifies the time which is waited after a ping
is received befor the next one will be launched.

Parameters:

server (char *) server to be connected

port (int) port to be connected

soft msec
(int) timeout in milliseconds which causes soft-
real-time exception.

hard msec
(int) timeout in milliseconds which causes hard-

real-time exception.

wait msec
(int) timeout for resent -- sending of the next

APPENDIX B: API OF THE NETWORK LIBRARY 61

ping.

linemonitor_exception

(pointer to function) This function will be called
if an exception occurs. It becomes the following
parameters: server name (char *) which is always
null, port (int): listend port and type (int) of
exception which can be: 0: Connicion Fault, 1: Soft
Real Time Exception, 2: HARD Real Time Exception,
3: Transmission Fault, 4: Emergency Stop.

void linemonitor_emergencystop (int sock)
Sends an ’Emergency Stop’ to the client’s side,
linemonitor() will produce an ’Emergency Stop’ exception
(type 4).

int linemonitor_server (int port, int soft_msec, int
hard_msec, int wait_msec, void(*

linemonitor_exception)(char *server, int port, int type))
Monitor if the ’line’ is fast enough: Server Application.

This function opens a port and wait for the first
connection on this port. All data/pings which is sent by
this first connection will be sent back. The soft-timeout
will called after wait_msec AND soft_msec is timeouted.
The hard-timeout will called after soft-timeout was called
AND hard_msec is timeouted.

Parameters:
port (int) port which should be listend

soft_msec
(int) timeout in milliseconds which causes soft-
real-time exception.

hard msec
(int) timeout in milliseconds which causes hard-
real-time exception.

wait msec
(int) timeout for resent -- sending of the next

ping.

APPENDIX B: API OF THE NETWORK LIBRARY

linemonitor_exception
(pointer to function) This function will be called
if an exception occurs. It becomes the following
parameters: server name (char *) which is always
null, port (int): listend port and type (int) of
exception which can be: 0: Connicion Fault, 1: Soft
Real Time Exception, 2: HARD Real Time Exception.

Returns:
(int) Filediscriptor to the used socket. Only for
usage with linemonitor_emergencystop().

void linemonitor_server_thread (struct
LINEMONITOR_THREAD_DATA
* linemonitor_thread_data)
Thread used by linemonitor_server() NOT for direct usage.

int linemonitor_thread (struct
LINEMONITOR_THREAD_DATA *
linemonitor_thread_data)
Thread used by linemonitor() NOT for direct usage.

int socket_accept (int sockport, int id, void(*
socket_accept_do)(int fd, int id, char *pip, struct
sockaddr_in their_addr))
Start a new thread, wait for connections and start
socket_accept_do() when someone connects.

Parameters:

sockport
(int) descriptor of a tcp socket/port from

socket_bind O

id (int) arbitrary id of background process / thread.
(May be it is a good idea to use the portnumber.)

aocket_accept_do
(int fd, int id, char *pip, struct sockaddr_in
their_addr) (function) this function is called if
somebody connects. fd is the descriptor of the new
socket to the connected tcp-tream. id is the same
as in socket_accept(). pip contains the ip-address

APPENDIX B: API OF THE NETWORK LIBRARY

of the connected client. The structure their_addr
contails all known information about the connected
client.

Returns:
If all right zero otherwise non zero.

void socket_accept_thread (struct LIBCOMMPTHREADP *

libcommpthreadp)
This is a part of Socket_accept() and must not called from
the user.

This function is the thread which is started from
socket_accept () and runs in background.

int socket_bind (int port, int cqueue)
Bind a socket to a port (Server side).

This function creates a socket and binds it to a local
port.

Parameters:
port an integer which specifies the port

cqueue an integer how many pending connections queue will
hold in the waiting queue.

Returns:
The File Descriptor (FD) which allows access to the

bound port.

int socket_connect (char * host, int port)
Connect a TCP-stream to a server (Client side).

Creates a socket and connect it over a TCP-stream to the
specified port on the specified server.

Parameters:

host a string (char *) which specifies the name or the
IP-address of the server.

port an integer which specifies the port on the server.

63

APPENDIX B: API OF THE NETWORK LIBRARY

Returns:
The File Descriptor (FD) which allows access to the
TCP-stream-socket or -1 if the connection fails.

int socket_mdbauth (int fd, char * netname, char * name,
struct AUTHINFO ** plocallogin, struct AUTHINFO **
premotelogin)
Do both side authentification.

This function is usually called just after a socket stream
is established. The function must be called on both sides.

WARNING: This authentication can be bypassed simply by
using the multiple session attack if multiple session are
allowd and the same password is used for both sides.

Both sides following these steps:

1. get auth info ([login] name, passwd) by using
getauthjnfo() from name or netname for remote login

2. generate random numbers
3. exchange (first send, then receive) login names
4. exchange random numbers

5. calculate md5 checksum over the random numbers
(received from other side) and the remote passwd.

6. exchange md5 checksums

7. get auth info from name (received from other side) for
local login

8. calculate md5 checksum over the local random numbers
and the local passwd.

9. check login -- compare the received mdbsum (6.) with
the generated one (8.); send acknowledgement

10. receive remote acknowledgement

11. return suitable values

APPENDIX B: API OF THE NETWORK LIBRARY

Parameters:

fd (int) describes the socket on which the
authentication has to be done

netname
(char *) use netname to resolve [login] name and

passwd of the remote machine (NULL: not specified)

netname
(char *) use [login] name to resolve passwd of the

remote machine (NULL: not specified; both NULL use
first entry in file, see getauthinfo())

plocallogin
(struct AUTHINFO **) (pointer to pointer to an
AUTHINFO struct) in this (double pointed) struct
the local authinfo will be loaded, if the parameter

is not null.

premotelogin
(struct AUTHINFO #%) in this (double pointed)

struct the remote authinfo will be loaded, if the
parameter is not null.

Returns:
(int) 0: Authentication/Login OK; -1: remote login
error; -2: login error on both sides; -3: local login
error; -4: other (network) error; -5: cannot load
remote auth info; -6: cannot load local auth info;

void threadl (struct LIBCOMMPTHREADS *

libcommpthreads)
This is a part of block_call() and must not called from

the user.

This function is the thread which is started from
block_call() and runs in background.

Parameters:

libcommpthreads

(struct LIBCOMMPTHREADS

*) holds pointers to the
functions to be call, fd (socket discriptor) and

65

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 66
id.

AUTHOR

Generated automatically by Doxygen for
Hofmeier_FYP:libcomm from the source code.

Hofmeier_FYP:libcomm 25 Apr 2005 libcomm.c(3)

Appendix C: Source Code of the Network Li-
brary

C.1 src/lib/libcomm.h

1 * %

2 @file

3

4 Definitions for libcomm.

5 x/

6

7T /%

8 Copyright (c) Andreas Hofmeier

9 (www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

10

11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.

15

16 This program is distributed in the hope that it will be useful, but

17 WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 General Public License for more details.

21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software

23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

24 %/

28 //#include ”"md5.h”
29 #include <stdio.h>
30 #include <sys/types.h>
31 #include <sys/socket.h>
32 #include <netinet/in.h>
33 #include <arpa/inet.h>

35 #define true 1
36 #define false 0O

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY

38 #ifndef nothread
39 #include <pthread.h>

40 #endif

41

42 // declaration
43

44 // mdb5auth

45 // the first authfile , which is fould will be used

46 // first authfile.

47 #define authfile0 ”./libcomm_md5auth.pwd”

48 // second authfile

49 #define authfilel ”/etc/libcomm_md5auth.pwd”

50 // one char/byte which seperates the field in the authfile
51 +#define authfilefieldseperator ’:°

52 // maxinam lenght of a line in the authfile

53 #define authfilemaxlinelenght 4096

54 // how much random bytes are generated for the authentication
55 #define authrandomstringsize (int) 16

56 // Define the message—type for the auth blocks

57 +#define authmessagetype 65535

59 // structure to stroe the authentication infromationen
60 struct AUTHINFO {

61 // network name

62 char *xnetname;

63 // login name

64 char *xname;

65 // login passwd

66 char *xpasswd;

67 // Key for encryption (not used yet)

68 char xkeyencrypt;

69 // Key for decryption (not used yet)

70 char xkeydecrypt;

71}

72

73 int socket_md5auth(int fd, char xnetname, char xname,
74 struct AUTHINFO xxlocallogin ,

75 struct AUTHINFO xxremotelogin);

76 struct AUTHINFO x getauthinfo (char snetname, char sname);
77

78

79

80 // socket_acceept
81 #ifndef nothread
82 struct LIBCOMMPTHREADP {

83 void (*socket_accept_do)(int fd, int id, char =pip,

84 struct sockaddr_in their_addr);
85

86 pthread_t thrd_2;

87 pthread_attr_t thrd_2_attr;

88 int sockport;

89 int id ;

90 };

91 void socket_accept_thread (struct LIBCOMMPTHREADP *libcommpthreadp);
92 int socket_accept(int sockport, int id,

93 void (xsocket_accept_do)(int fd, int id, char =pip,
94 struct sockaddr_in their_addr));
95 #endif

96

97

98 // block_receive

99 #ifndef nothread

100 struct LIBCOMMPTHREADS {

101 void (*block_call_do)(int fd, int id, unsigned int type,

102 char xbuf, unsigned int size, int term);

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 68

103 void (*block_call_term)(int fd, int id);
104

105 pthread_t thrd_1;

106 pthread_attr_t thrd_1_attr;

107 int fd;

108 int id ;

109 int term;

110 };

111 void threadl(struct LIBCOMMPTHREADS *libcommpthreads);
112 int block_call(int fd, int id, int term,

113 void (xblock_call_do)(int fd, int id, unsigned int type,
114 char xbuf, unsigned int size,
115 int term),

116 void (xblock_call_term)(int fd, int id));

117 #endif

118 char *xblock_receive_poll(int fd, unsigned int *xtype, char xbuf,
119 unsigned int xsize , unsigned int maxsize,
120 int term);

121 char *xblock_receive (int fd, unsigned int *xtype, char =buf,

122 unsigned int *xsize , unsigned int maxsize,

123 int term);

124 int block_receive_integer (int fd, unsigned int xrecvi);
125 int block_receive_nbytes(int fd, char xbuf, int n);
126

127

128

129 // block_send

130 int block_send (int fd, unsigned int type, char xbuf, unsigned int size);
131

132

133

134 // block_random

135 char xblock_random (char xbuf, int size);

136

137

138

139 // socket_bind

140 int socket_bind (int port, int cqueue);

141

142

143

144 // socket_connect

145 int socket_connect(char xhost, int port);

146

147

148

149 // line monitor

150 struct LINEMONITOR. THREAD DATA {

151 char xserver;

152 int port;

153 int soft_msec;

154 int hard_msec;

155 int wait_msec;

156 void (*linemonitor_exception)(char xserver , int port, int type);
157 int sock;

158 };

159

160

161 void linemonitor_server_thread (struct LINEMONITOR THREAD_DATA

162 xlinemonitor_thread_data);

163 int linemonitor_server (int port,

164 int soft_msec, int hard_msec, int wait_msec,

165 void (*linemonitor_exception)(char xserver , int port,
166 int type));

167 void linemonitor_emergencystop (int sock);

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 69

168 int linemonitor_thread (struct LINEMONITOR THREAD DATA

169 xlinemonitor_thread_data);

170 int linemonitor (char xserver, int port,

171 int soft_msec, int hard_msec, int wait_msec,

172 void (*linemonitor_exception)(char xserver, int port,
173 int type));

174

175

C.2 src/lib/libcomm.c

1 /*x

2 @file

3

4 Main part of libcomm.

5 x/

6

e

8 Copyright (c¢) Andreas Hofmeier

9 (www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

10

11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.

15

16 This program is distributed in the hope that it will be useful , but

17 WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

19 General Public License for more details.

20

21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software

23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

24 x/

25

26

27 #include <stdio.h>

28 #include <stdlib .h>

29 #include <sys/types.h>
30 #include <sys/socket.h>
31 #include <sys/time.h>
32 #include <unistd.h>

33 #include <sys/poll.h>
34 #include <string.h>

37 #include ”libcomm.h”
38 #include ”md5.h”

40 #ifndef nothread
41 #include <pthread.h>

42 #endif

43

44

45 #ifndef nothread

46 /%

47 This is a part of socket_accept () and must not called from the
48 user . This function is the thread which is started from

49 socket_accept () and runs in background.

50 =/

51 void socket_accept_thread (struct LIBCOMMPTHREADP *libcommpthreadp) {

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 70

109
110
111
112
113
114
115
116

/ *

*/

in

char *xbuf;

unsigned int type;

unsigned int size;

/* connector ’s address information x/
struct sockaddr_in their_addr;

int sin_size;

int fd;

while (1) {
// wait and accept a incomming connection
sin_size = sizeof(struct sockaddr_in);

if ((fd = accept(libcommpthreadp —> sockport ,
(struct sockaddr %) &their_addr,
&sin_size)) = —1) {
char =pip = inet_ntoa(their_addr.sin_addr);

libcommpthreadp —> socket_accept_do (fd,
libcommpthreadp —> id,
pip, their_addr);

// pthread_exit (NULL);

*
Start a new thread, wait for connections and start
socket_accept_do () when someone connects.

@param sockport (int) descriptor of a tcp socket/port from
socket_bind ()

@param id (int) arbitrary id of background process / thread. (May
be it is a good idea to use the portnumber.)

@param aocket_accept_do(int fd, int id, char *pip, struct
sockaddr_in their_addr) (function) this function is called if
somebody connects. fd is the descriptor of the new socket to the
connected tcp—tream. id is the same as in socket_accept (). pip
contains the ip—address of the connected client. The structure
their_addr contails all known information about the connected
client .

Q@return If all right zero otherwise non zero.

t socket_accept (int sockport, int id,
void (*socket_accept_do)(int fd, int id, char xpip,
struct sockaddr_in their_addr)) {

// allocate memory for thread configuration
struct LIBCOMMPTHREADP x*libcommpthreadp ;
libcommpthreadp = (struct LIBCOMMPTHREADP)
malloc(sizeof (struct LIBCOMMPTHREADP));
if (libcommpthreadp == NULL) {
perror ("malloc ()”);
return —1;

}

// store all necessary data in it

libcommpthreadp —> sockport = sockport;

libcommpthreadp —> id = id;

libcommpthreadp —> socket_accept_do = socket_accept_do;

// starting thread
pthread_attr_init (&(libcommpthreadp —> thrd_2_attr));

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 71

117 return pthread_create(&(libcommpthreadp —> thrd_2),
118 &(libcommpthreadp —> thrd_2_attr),
119 (void *) socket_accept_thread,
120 libcommpthreadp);

121

122}

123

124 #endif

125

126

127 /*% Bind a socket to a port (Server side). This function creates a
128 socket and binds it to a local port.

129

130 @param port an integer which specifies the port

131

132 @param cqueue an integer how many pending connections queue will
133 hold in the waiting queue.

134

135 @return The File Descriptor (FD) which allows access to the bound
136 port.

137 x/

138

139 #include <netinet/in.h>

140

141 int socket_bind (int port, int cqueue) {

142 // FD of the new socket to the bound port

143 int sock;

144 // address information

145 struct sockaddr_in ad;

146

147 // create a socket

148 if ((sock = socket(AFINET, SOCKSTREAM, 0)) == —1) {
149 // cannot created socket, return error

150 perror ("socket ”);

151 return —1;

152 }

153

154 // make ensure that the memory is initiated

155 memset(&ad, 0, sizeof(ad));

156

157 // address family: AF_INET: IPv4 Internet protocols
158 ad.sin_family = AF_INET;

159 // convert and copy port in structure

160 ad.sin_port = htons(port);

161 // bind to all interfaces —— the port will accept connections to all
162 // addresses of the local machine

163 ad.sin_addr.s_addr = INADDR_ANY;

164 // bind socket

165 if (bind(sock, (struct sockaddr x) &ad, sizeof(struct sockaddr)) == —1) {
166 // cannot bind, return error

167 perror (”bind”);

168 return —1;

169

170 // listen for connections on bound port

171 if (listen (sock, cqueue) == —-1) {

172 // cannot listen , return error

173 perror ("listen ”);

174 return —1;

175

176 // all right, port is listening. Return the FD as
177 // reference for use.

178 return sock;

179}

180

181

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 72

182 #include <netinet/in.h>
183 +#include <netdb.h>

184 #include <sys/types.h>
185 #include <sys/socket .h>
186 #include <arpa/inet .h>

187

188

189

190 /xx

191 Connect a TCP-stream to a server (Client side). Creates a socket and
192 connect it over a TCP-stream to the specified port on the specified
193 server.

194

195 @param host a string (char) which specifies the name or the
196 IP—address of the server.

197

198 @param port an integer which specifies the port on the server.
199

200 @return The File Descriptor (FD) which allows access to the

201 TCP-stream—socket or —1 if the connection fails.

202 x/

203 int socket_connect(char xhost, int port) {

204 // FD of the new socket to the TCP-stream

205 int sock;

206 // The IP address in binary form

207 in_addr_t inaddr;

208 // address information to connect other side (syscall: connect ())
209 struct sockaddr_in ad;

210 // contains the result of the resolution of a network—mame.

211 struct hostent xhp;

212

213 // make ensure that the memory is initiated

214 memset(&ad, 0, sizeof(ad));

215 // address family: AF_INET: IPv4 Internet protocols

216 ad.sin_family = AF_INET;

217 // Try to convert the given IP—address into binary data...

218 inaddr = inet_addr (host);

219 if (inaddr != INADDRNONE) {

220 // if the IP address was converted copy it in the parameter
221 // structure (ad) for later use

222 memcpy(&ad . sin_addr , &inaddr, sizeof (inaddr));

223 } else {

224 // if this is not possible (the name and not the IP address is
225 // given), try to resolve the name to a binary IP address
226 hp = gethostbyname (host);

227 if (hp == NULL) {

228 // name cannot resolved , return error

229 perror (" gethostbyname ()”);

230 return —1;

231

232 // copy address in the parameter structure (ad) for later use
233 memcpy(&ad . sin_addr , hp—>h_addr, hp—>h_length);

234 }

235 // convert and copy port—number in the parameter structure (ad) for
236 // later use

237 ad.sin_port = htons(port);

238 // create a socket

239 sock = socket (AF_INET, SOCKSTREAM, 0);

240 if (sock < 0) {

241 // cannot created socket, return error

242 perror ("socket ()”);

243 return —1;

244

}
245 // connect the socket over an TCP-stream to the port and the server,
246 // which are stored in ad.

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 73

247 if (connect(sock, (struct sockaddr %) &ad, sizeof(ad)) < 0) {

248 // connection is not possible, return error

249 perror (" connect ()”);

250 return —1;

251

252 // all right , socket is connected an can be used. Return the FD as
253 // reference for use.

254 return sock;

255 }

256

257

258 /%

259 Get random numbers/bytes. This function reads random numbers/bytes
260 from /dev/urandom and stores this bytes in a buffer.

261

262 @param buf (char =) in which the bytes will be stored. If this
263 parameter is equal to NULL dynamic memory will be allocated.

264

265 @param size an integer , specifies ths size of the buffer (the

266 number of the random bytes). WARNING: If buf is not equal to null,
267 n*(size) bytes will be stored in this buffer without any check of
268 ths size of this buf.

269

270 @return (char %) a pointer to the buffer in which the random bytes
271 are stored.

272 x/

273 char xblock_random (char xbuf, int size) {
274 FILE *f;

275

276 // If no momory allocated , allocate memory

277 if (buf == NULL) {

278 if ((buf = malloc(size)) == NULL) {

279 perror ("malloc”);

280 return NULL;

281 }

282 }

283

284 // Read Random numbers from /dev/urandom and stroe this these in the
285 // buffer

286

287 if ((f = fopen(”/dev/urandom”, "ro”)) == NULL) {

288 perror (”fopen (/dev/urandom)”);

289 return NULL;

290 }

291

292 fread (buf, 1, size, f);

293

294 fclose (f);

295

296 return buf;

297}

298

299

300

301

302

303

304 #ifndef nothread

305 /%

306 This is a part of block_call() and must not called from the
307 user . This function is the thread which is started from
308 block_call () and runs in background.

309

310 @param libcommpthreads (struct LIBOOMMPTHREADS) holds pointers to

311 the functions to be call, fd (socket discriptor) and id.

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

*/

void threadl(struct LIBCOMMPTHREADS *libcommpthreads) {

}

/*

*/
in

char *xbuf;
unsigned int type;
unsigned int size;

while (1) {
// try to receive a datablock...
buf = block_receive (libcommpthreads —> fd, &type, NULL, &size , 0,
libcommpthreads —> term);
// failed: call block_call_term () and terminate thread
if (buf == NULL) {
libcommpthreads —> block_call_term (libcommpthreads —> fd,
libcommpthreads —> id);
break;

// datablock OK: call block_call_do (), after this wait for the

// mnext datablock

libcommpthreads —> block_call_do (libcommpthreads —> fd ,
libcommpthreads —> id,
type, buf, size,
libcommpthreads —> term);

}

pthread_exit (NULL);

*
Waits in a new thread for a datablock to be received and calls the
function block_call_do () if this event occurs or block_call_term ()
when the connection terminates.
@param fd (int) descriptor of socket
@param id (int) arbitrary id of background process / thread
@param term (int) 0: do not terminate the buffer, 1: terminate the
buffer by appending a 0x00.
@param block_call_do (int fd, int id, unsigned int type, char xbuf,
unsigned int size, int term) (function) this function is called if
a datablock was received. fd, id and term are the same as in
block_call (). type describes the type of the received datablock,
buf is a pointer to this datablock and size is the number of bytes
of the datablock
@param block_call_term (int fd, int id) (function) this function is
called if the connection terminates. fd and id are the same as in
block_call ().
@Qreturn If all right zero otherwise non zero.

t block_call(int fd, int id, int term,

void (*block_call_do)(int fd, int id, unsigned int type,
char xbuf, unsigned int size,
int term),

void (xblock_call_term)(int fd, int id)) {

// allocate memory for thread configuration
struct LIBCOMMPTHREADS *libcommpthreads;
libcommpthreads = (struct LIBCOMMPTHREADS)
malloc(sizeof (struct LIBCOMMPTHREADS));
if (libcommpthreads == NULL) {
perror ("malloc ()”);
return —1;

74

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 75

377 }

378

379 // store all necessary data in it

380 libcommpthreads —> fd = fd;

381 libcommpthreads —> id = id;

382 libcommpthreads —> block_call_do = block_call_do;

383 libcommpthreads —> block_call_term = block_call_termj;

384

385 // starting thread

386 pthread_attr_init (&(libcommpthreads —> thrd_1_attr));

387 return pthread_create (&(libcommpthreads —> thrd_1),

388 &(libcommpthreads —> thrd_1_attr),

389 (void *) threadl, libcommpthreads);

390 }

391

392 #endif

393

394

395

396 /=

397 This function tests if new data is available to read on a stream.
398

399 @param fd (int) discriptor of stream to test

400

401 @return (int) 1: Data to read; 0: No data to read

402 x/

403 int block_ifdata (int fd) {

404 struct pollfd polld;

405

406 polld . fd = fd;

407 polld .events = POLLIN | POLLPRI;

408

409 if (poll(&polld, 1, 0)) {

410 return 1;

411 }

412 return 0;

413}

414

415

416 /#*x

417 Test if is there data available on the socket’s input buffer and
418 starts receiving a block if there is. WARNING: The integers (type
419 and size; excluding fd) are only 16 bit values (0 — 65535).

420

421 @param fd (int) descriptor of socket

422

423 @param type (unsigned int %) pointer to integer , this value can be
424 used as buyer’s option

425

426 @param buf (char %) buffer for datablock. Memory will be allocated
427 if this parameter is equal to null.

428

429 @param size (unsigned int %) pointer to integer in which the size
430 of the received datablock is saved.

431

432 @param maxsize (unsigned int x) describes size of buf. This

433 parameter will be ignored if buf is equal to null.

434

435 @param term (int) 0: do not terminate the buffer , 1: terminate the
436 buffer by appending a 0x00.

437

438 @return (char *) pointer to buffer which contains the received
439 datablock; NULL if fail; 1 if no data available.

440

441 x/

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 76

442 char xblock_receive_poll(int fd, unsigned int stype, char xbuf,

443 unsigned int *xsize , unsigned int maxsize,
444 int term) {

445 // new data available

446 if (block_ifdata(fd)) {

447 return block_receive (fd, type, buf, size, maxsize, term);
448 } else {

449 // no new data available

450 return (char *) 1L;

451 }

452}

453

454

455

456 /%

457 Receive a block (composition of: type, size of datablock and
458 datablock) from a socket. Waits for a block to be received
459 completely . WARNING: The integers (type and size; excluding fd) are
460 only 16 bit values (0 — 65535).

461

462 @param fd (int) descriptor of socket

463

464 @param type (unsigned int %) pointer to integer , this value can be
465 used as buyer’s option

466

467 @param buf (char =) buffer for datablock. Memory will be allocated
468 if this parameter is equal to null.

469

470 @param size (unsigned int %) pointer to integer in which the size
471 of the received datablock is saved.

472

473 @param maxsize (unsigned int *) describes size of buf. This
474 parameter will be ignored if buf is equal to null.

475

476 @param term (int) 0: do not terminate the buffer, 1: terminate the
477 buffer by appending a 0x00.

478

479 @return (char *) pointer to buffer which contains the received
480 datablock; NULL if fail.

481

482 x/

483 char *block_receive(int fd, unsigned int *type, char xbuf,

484 unsigned int *xsize , unsigned int maxsize,
485 int term) {

486 // do mnot trust any user!

487 if (term > 1) {

488 term = 1;

489

490 if (term < 0) {

491 term = 0;

492 }

493

494 // receiving type

495 if (block_receive_integer (fd, type) < 0) {

496 return NULL;

497 }

498 // receiving size

499 if (block_receive_integer (fd, size) < 0) {

500 return NULL;

501 }

502

503 if (buf == NULL) {

504 if ((buf = (char *) malloc(xsize + term)) == NULL) {

505 perror ("malloc ()”);

506 return NULL;

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 77

507

508 } else {

509 if ((xsize + term) > maxsize) {

510 fprintf(stderr, ”Try to receive more than fit in the buffer\n”);
511 return NULL;

512 }

513 }

514 // receiving data

515 if (block_receive_nbytes(fd, buf, xsize) < 0) {

516 return NULL;

517}

518

519 if (term) {

520 buf[*xsize] = 0;

521

522

523 return buf;

524}

525

526

527

528

529 /xx

530 Receive an integer (two bytes; 16Bit) from the socket.
531

532 @param fd (int) descriptor of socket

533

534 @param recvi (unsigned int) pointer to integer in which the
535 received integer 1is saved.

536

537 @return (int) 2: OK; —1: fail

538 %/

539 int block_receive_integer (int fd, unsigned int *recvi) {
540 int i, r;

541 // unsigned int recvi;

542 int sizeofint = 2; /% sizeof(int); =/

543

544 // reset value

545 xrecvi = 0;

546

547 // receive value

548 if (recv(fd, ((char) recvi), sizeofint , MSGWAITALL) != sizeofint) {
549 perror ("recv ()”);

550 return —1;

551 }

552

553 return 2; //recvi;

554 1}

555

556

557

558

559 /xx

560 Receive n bytes from socket.

561

562 @param fd (integer) descriptor of socket

563

564 @param buf (char *) buffer for saving the received bytes
565

566 @param n (integer) number of bytes to receive
567

568 @return (integer) n: OK; —1 fial

569 */

570 int block_receive_nbytes(int fd, char xbuf, int n) {
571 int i, r;

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 78

572 unsigned int recvi;

573 int sizeofint = 2; /* sizeof(int); =/

574

575 // receive n bytes to buffer

576 if (recv(fd, buf, n, MSGWAITALL) != n) {

577 perror ("recv ()”);

578 return —1;

579 }

580

581 return n;

582}

583

584

585

586 /%

587 Send a block (composition of: type, size of datablock and datablock
588 (buf)) to a socket. The function blocks until the whole block is
589 transfered to the buffer. If the buffer is full , data has to be
590 sent first. WARNING: The integers (type and size; excluding fd) are
591 only 16 bit values (0 — 65535).

592

593 @param fd (int) descriptor of the socket to which buf should send
594

595 @param type (unsigned int) This value can be used as buyer’s option
596

597 @param buf (char *) which should be send

598

599 @Qreturn number of sent bytes, —1 if an error is occurt.
600 x/

601

602 int block_send(int fd, unsigned int type, char xbuf,

603 unsigned int size) {

604 // add up the number of sent byte, for checking.

605 int i, r;

606

607 // send the type of the data

608 i=r =0;

609 while (r < 2) {

610 if ((i = send(fd, (void *) &type + r, 2 — r, 0)) < 0) {
611 return —1;

612 1

613 r +=1i;

614

615 // send the size of the buffer

616 i=r1r = 0;

617 while (r < 2) {

618 if ((i = send(fd, (void *) &size +r, 2 — r, 0)) < 0) {
619 return —1;

620 }

621 r4=1i;

622

623 // send the data in the buffer it self

624 i=1 =0;

625 while (r < size) {

626 if ((i = send(fd, (void %) buf + r, size — 1, 0)) < 0) {
627 return —1;

628 }

629 r +=1ij;

630 }

631

632 /*

633 // send the type of the data

634 if ((r = send(fd, (void *) &type, 2, 0)) < 0) {

635 return —1;

636 }

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY
637 // send the size of the buffer
638 if ((i = send(fd, (void *) &size, 2, 0)) < 0) {
639 perror (”send0 ()”);
640 return —1;
641 }
642 r+=1ij;
643 // send the data in the buffer it self
644 if ((i = send(fd, buf, size, 0)) < 0) {
645 perror ("sendl ()”);
646 return —1;
647 }
648 r +=1i;
649
650 // not the comlete messages was sent.
651 if (r = (size + 4)) {
652 perror ("send2 ()”);
653 return —1;
654 }
655 */
656
657 return r;
658 }
659
660
661
662
663
664
665 /xx
666 Free the memory space which is used by an AUTHINFO structure.
667
668 @param (struct AUTHINFO %) pointer to structure to destroy.
669 =/
670 void free_authinfo (struct AUTHINFO xdestroy) {
671 free (destroy —> netname);
672 free (destroy —> name);
673 free (destroy —> passwd);
674 free (destroy —> keyencrypt);
675 free (destroy —> keydecrypt);
676 free (destroy);
677 }
678
679
680
681 /%
682 Do both side authentification. This function is usually called
683 just after a socket stream is established. The function must be
684 called on both sides.
685
686 WARNING: This authentication can be bypassed simply by using the
687 multiple session attack if multiple session are allowd and the same
688 password is used for both sides.
689
690 Both sides following these steps:
691
692 1. get auth info ([login] name, passwd) by using getauthinfo () from
693 name or netname for remote login
694
695 2. generate random numbers
696
697 3. exchange (first send, then receive) login names
698
699 4. exchange random numbers
700

79

701 5. calculate md5 checksum over the random numbers (received from other

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 80

702 side) and the remote passwd.

703

704 6. exchange md5 checksums

705

706 7. get auth info from name (received from other side) for local login
707

708 8. calculate md5 checksum over the local random numbers and the
709 local passwd.

710

711 9. check login —— compare the received mdSsum (6.) with the

712 generated omne (8.); send acknowledgement

713

714 10. receive remote acknowledgement

715

716 11. return suitable wvalues

717

718 @param fd (int) describes the socket on which the authentication
719 has to be done

720

721 @param netname (char %) use netname to resolve [login]| name and
722 passwd of the remote machine (NULL: not specified)

723

724 @param netname (char %) use [login] name to resolve passwd of the
725 remote machine (NULL: not specified; both NULL use first entry in
726 file , see getauthinfo ())

727

728 @param plocallogin (struct AUTHINFO %x*) (pointer to pointer to an
729 AUTHINFO struct) in this (double pointed) struct the local authinfo
730 will be loaded, if the parameter is not null.

731

732 @param premotelogin (struct AUTHINFO *x) in this (double pointed)
733 struct the remote authinfo will be loaded, if the parameter is not
734 null.

735

736 @return (int) O: Authentication/Login OK; —1: remote login error;
737 —2: login error on both sides; —3: local login error; —4: other
738 (network) error; —5: cannot load remote auth info; —6: cannot load
739 local auth info;

740 x/

741 int socket_mdbauth(int fd, char snetname, char sname,

742 struct AUTHINFO % plocallogin ,

743 struct AUTHINFO x#*premotelogin) {

744 char rstrO[authrandomstringsize], rstrl[authrandomstringsize |;

745 char rstrOsum [35], rstrlsum [35];

746

747 int otype;

748 char *xoname;

749 int onamesize;

750 char xrandblock;

751 char xorandblock;

752 int orandblocksize;

753

754 struct MD5Context context ;

755 unsigned char md5_prs[16];

756 unsigned char omd5_prs[16];

757

758 int login_ok = 0;

759

760 struct AUTHINFO xlocallogin ;

761 // 1.

762 struct AUTHINFO *remotelogin = getauthinfo (netname, name);

763 if (remotelogin == NULL) {

764 return —5;

765 }

766 if (premotelogin != NULL) {

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY

767 spremotelogin = remotelogin;

768 }

769

770 // 2. generate random block for local login

771 if ((randblock = block_-random (NULL, authrandomstringsize))
772 ==NULL) {

773 if (premotelogin == NULL) {

774 free_authinfo (remotelogin);

775 }

776 return —4;

777}

778

779 // 3. exchange login name

780 if (block_send(fd, authmessagetype, remotelogin —> name,
781 strlen (remotelogin —> name)) <= 0) {
782 if (premotelogin == NULL) {

783 free_authinfo (remotelogin);

784 }

785 free (randblock);

786 return —4;

787 }

788 oname = block_receive (fd, &otype, NULL, &onamesize, 0, true);
789 if ((oname == NULL) ||

790 (otype != authmessagetype)) {

791 if (premotelogin == NULL) {

792 free_authinfo (remotelogin);

793

794 free (randblock);

795 return —4;

796 }

797

798

799 // 4. exchange random block

800 if (block_send (fd, authmessagetype, randblock,

801 authrandomstringsize)

802 <=0) {

803 if (premotelogin == NULL) {

804 free_authinfo (remotelogin);

805 }

806 free (randblock);

807 free (oname);

808 return —4;

809

810 orandblock = block_receive (fd, &otype, NULL,

811 &orandblocksize , 0, false);
812 if ((orandblock == NULL) ||

813 (otype !'= authmessagetype)) {

814 if (premotelogin == NULL) {

815 free_authinfo (remotelogin);

816 }

817 free (randblock);

818 free (oname);

819 free (orandblock);

820 return —4;

821 }

822

823 // 5. calculate md5 checksum over the random numbers (received from
824 // other side) and the remote passwd.

825 MD5Init(&context);
826 MD5Update(& context , orandblock , orandblocksize);

827 MD5Update(& context , remotelogin —> passwd,
828 strlen (remotelogin —> passwd));
829 MD5Final (md5_prs, & context);

830

831 // 6. exchange md5 checkumms

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 82

832 if (block_send (fd, authmessagetype, mdb_prs, 16) <= 0) {
833 if (premotelogin == NULL) {

834 free_authinfo (remotelogin);

835 }

836 free (randblock);

837 free (oname);

838 free (orandblock);

839 return —4;

840

841 if ((block_receive(fd, &otype, omd5_prs, &orandblocksize ,
842 16, false)

843 —=NULL) ||

844 (otype != authmessagetype) ||

845 (orandblocksize != 16)) {

846 if (premotelogin == NULL) {

847 free_authinfo (remotelogin);

848

849 free (randblock);

850 free (oname);

851 free (orandblock);

852 return —4;

853 }

854 usleep (1);

855

856 // 7. get auth info from name (received from other side) for local login
857 locallogin = getauthinfo (NULL, oname);

858 if (locallogin == NULL) {

859 if (premotelogin == NULL) {

860 free_authinfo (remotelogin);

861 }

862 free (randblock);

863 free (oname);

864 free (orandblock);

865 return —6;

866

867 if (plocallogin != NULL) {

868 xplocallogin = locallogin;

869 }

870

871 // 8. calculate md5 checksum over the local random numbers and the
872 // local passwd.

873 MD5Init(&context);

874 MD5Update(& context , randblock , authrandomstringsize);
875 MD5Update(& context , locallogin —> passwd,

876 strlen (locallogin —> passwd));

877 MD5Final (md5_prs, & context);

878

879 // 9. check login —— compare the received mdbSsum (6.) with the
880 // generated one (8.); send acknowledgement

881 if (memecmp(md5_prs, omdb5_prs, 16) == 0) {

882 login_ok = 1;

883 if (block_send (fd, authmessagetype, "OK”, 2) <= 0) {
884 if (plocallogin == NULL) {

885 free_authinfo (locallogin);

886

887 if (premotelogin == NULL) {

888 free_authinfo (remotelogin);

889

890 free (randblock);

891 free (oname);

892 free (orandblock);

893 return —4;

894

895 } else {
896 if (block_send (fd, authmessagetype, "FAIL”, 4) <= 0) {

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 83

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

if (plocallogin == NULL) {
free_authinfo (locallogin);

if (premotelogin == NULL) {
free_authinfo (remotelogin);
}

free (randblock);
free (oname);
free (orandblock);
return —4;
}
}

// 10. receive remote acknowledgement
free (orandblock);
orandblock = block_receive (fd, &otype, NULL, & orandblocksize ,

0, true);
if ((orandblock == NULL) ||
(otype != authmessagetype) ||
(orandblocksize != 2) ||
(stremp (orandblock , "OK”) != 0)) {

if (login_ok) {
if (plocallogin == NULL) {
free_authinfo (locallogin);

if (premotelogin == NULL) {
free_authinfo (remotelogin);
}

free (randblock);
free (oname);
return —1;

} else {
if (plocallogin == NULL) {
free_authinfo (locallogin);

if (premotelogin == NULL) {
free_authinfo (remotelogin);

}

free (randblock);
free (oname);
return —2;

if (plocallogin == NULL) {
free_authinfo(locallogin);

if (premotelogin == NULL) {
free_authinfo (remotelogin);

free (randblock);
free (oname);
free (orandblock);

if (!login_ok) {

return —3;
}

// all right!
return 0;

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

/%

*/

st

*
Load authentication informations (netname, name, passwd,
keyencrypt , keydecrypt) from authfile.

@param netname (char) specify the network name (may IP).
specified .

@param name (char %) specity the login name. NULL not
specified.

NULL not

@return (struct AUTHINFO %) the first entry from authfile which
matches network name OR login name. If both values are NULL, the

first entry of the authfile is given back.

ruct AUTHINFO #*getauthinfo (char snetname, char xname) {
// Descriptor for authfile

FILE #f;

// buffer for reading one line of the authfile
char buf[authfilemaxlinelenght];

// number of fields in the authfile

int fields = 5;

// pointer buffer for the five parts of the line
char xbufsplit[fields];

// char xxbufsplit;

// control variable, count variable for field
int i, j;

struct AUTHINFO x*load;

// temporary pointer

char *xs;

// bufsplit = (char %) malloc(sizeof(char %) % fields);

// allocate memory for auth—structure
load = (struct AUTHINFO #) malloc(sizeof(struct AUTHINFO));
if (load == NULL) {

perror ("malloc (sizeof (struct AUTHINFO))”);

return NULL;

}
// open authfile
if ((f = fopen(authfile0, ”"ro”)) == NULL) {
perror (authfile0);
if ((f = fopen(authfilel , "ro”)) == NULL) {
perror (authfile0);
free (load);
return NULL;
}
}

// read as long as ther is no more data
while (!feof(f)) {

// read one line

fgets (buf, authfilemaxlinelenght — 1, f);

// split the line into it five components

j =0
bufsplit [j++] = buf;
// load —> netname = buf;
for (i = 0; i < authfilemaxlinelenght; i++) {
if (buf[i] == authfilefieldseperator) {
buf[i] = 0;
if (j == fields) {
break;

bufsplit [j++] = buf + i + 1;

84

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 85

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

}
}

// if this the right entry? Compare with parameter.

if (

// allocate Memory

name != NULL) && (strcmp (

(
\
|
(netname == NULL) && (name == NULL))
{

for (i = 0; i < fields; i++4){

name, bufsplit[1l]) == 0))

netname != NULL) && (strcmp (netname, bufsplit[0]) == 0))

s = (char x) malloc(strlen (bufsplit[i]) + 1);

if (s == NULL) {

perror ("malloc ()”);

free (load);
return NULL;
}

strcpy (s, bufsplit[i]);

bufsplit [i] = s}

}

// store the pointers

load —> netname =
load —> name =
load —> passwd =
load —> keyencrypt
load —> keydecrypt

// return the pointer to this

return load;

}

free (load);
return NULL;

}

[xx

in the struct

bufsplit [0];
bufsplit [1];
bufsplit [2];
bufsplit [3];
bufsplit [4];

struct

Thread used by linemonitor_server () NOT for direct usage.

*/

void linemonitor_server_thread (struct LINEMONITOR THREAD DATA
#linemonitor_thread_data) {

unsigned char buf;

// configuration of poll —— waiting for an event of the socket.

struct pollfd polld;

polld.fd = linemonitor_thread_data —> sock;
polld .events = POLLIN | POLLPRI;

while (1) {

// Receive a Ping/Byte
if (recv(linemonitor_thread_data —> sock, ((char) &buf), 1,
MSG-WAITALL) != 1) {
linemonitor_thread_data —> linemonitor_exception (
linemonitor_thread_data —> server ,
linemonitor_thread_data —> port, 0);

break;

}
// And Send it Back

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 86

1092 if (send(linemonitor_thread_data —> sock, &buf, 1, 0) != 1) {
1093 linemonitor_thread_data —> linemonitor_exception (

1094 linemonitor_thread_data —> server ,

1095 linemonitor_thread_data —> port, 0);

1096 break ;

1097 }

1098

1099 // Test, if next Ping is received within the reload—time plus
1100 // soft—timeout

1101 if (poll(&polld, 1, linemonitor_thread_data —> wait_msec)

1102 <=0) {

1103

1104 if (poll(&polld, 1, linemonitor_thread_data —> soft_msec)
1105 <=0) {

1106 // If not, call exception—function

1107 linemonitor_thread_data —> linemonitor_exception (

1108 linemonitor_thread_data —> server ,

1109 linemonitor_thread_data —> port, 1);
1110

1111 // and test if the data is received within the hard—timeout
1112 if (poll(&polld, 1, linemonitor_thread_data —> hard_msec)
1113 <=0) {

1114 // If not, call exception—function

1115 linemonitor_thread_data —> linemonitor_exception (

1116 linemonitor_thread_data —> server ,
1117 linemonitor_thread_data —> port, 2);
1118 }

1119 }

1120 }

1121 }

1122

1123 pthread_exit (NULL);

1124 1}

1125

1126

1127

1128 /*x

1129 Monitor if the ”line” is fast enough: Server Application. This
1130 function opens a port and wait for the first connection on this
1131 port. All data/pings which is sent by this first connection will
1132 be sent back. The soft—timeout will called after wait_-msec AND
1133 soft_msec is timeouted. The hard—timeout will called after

1134 soft —timeout was called AND hard_msec is timeouted.

1135

1136 @param port (int) port which should be listend

1137

1138 @param soft_msec (int) timeout in milliseconds which causes
1139 soft —real —time exception.

1140

1141 @param hard_msec (int) timeout in milliseconds which causes
1142 hard—real —time exception.

1143

1144 @param wait_msec (int) timeout for resent —— sending of the next
1145 ping.

1146

1147 @param linemonitor_exception (pointer to function) This function
1148 will be called if an exception occurs. It becomes the following
1149 parameters: server name (char %) which is always null, port (int):
1150 listend port and type (int) of exception which can be: 0: Connicion
1151 Fault, 1: Soft Real Time Exception, 2: HARD Real Time Exception.
1152

1153 @return (int) Filediscriptor to the used socket. Only for usage
1154 with linemonitor_emergencystop ().

1155 x/

1156 int linemonitor_server (int port,

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 87

1157 int soft_msec, int hard_msec, int wait_msec,
1158 void (*linemonitor_exception)(char xserver , int port,
1159 int type)) {
1160 int sock;

1161

1162 /* connector ’s address information x/

1163 struct sockaddr_in their_addr;

1164 int sin_size;

1165 int fd;

1166

1167 // ID and atributes for the threads

1168 pthread_t thrd_2;

1169 pthread_attr_t thrd_2_attr;

1170

1171 // allocate memory to store parameter for the

1172 // linemonitor_server_thread () function.

1173 struct LINEMONITOR.THREAD DATA xlinemonitor_thread_data;
1174 linemonitor_thread_data = (struct LINEMONITOR.THREAD DATA i)
1175 malloc(sizeof (struct LINEMONITOR THREAD DATA));

1176 if (linemonitor_thread_data == NULL) {

1177 perror ("malloc ()”);

1178 return —1;

1179 }

1180

1181 // store all necessary parameters in this memory

1182 linemonitor_thread_data —> server = NULL;

1183 linemonitor_thread_data —> port = port;

1184 linemonitor_thread_data —> soft_msec = soft_msec;

1185 linemonitor_thread_data —> hard_msec = hard_msec;

1186 linemonitor_thread_data —> wait_msec = wait_msec;

1187 linemonitor_thread_data —> linemonitor_exception =

1188 linemonitor_exception;

1189

1190 // Bind a port

1191 sock = socket_bind (port, 10);

1192

1193 // wait for the first connection

1194 // only accept the first connection

1195 sin_size = sizeof(struct sockaddr_in);

1196 if ((fd = accept(sock, (struct sockaddr %) &their_addr ,
1197 &sin_size)) != —1) {

1198 char xpip = inet_ntoa(their_addr.sin_addr);

1199

1200 linemonitor_thread_data —> sock = fd;

1201

1202 // starting linemonitor_server_thread ()

1203 pthread_attr_init(&thrd_2_attr);

1204 if (pthread_create(&thrd_2,

1205 &thrd_2_attr ,

1206 (void *) linemonitor_server_thread,
1207 linemonitor_thread_data) != 0) {
1208 return —1;

1209 }

1210

1211 return fd;

1212 }

1213

1214 return —1;

1215 1}

1216

1217

1218

1219 /x*x

1220 Sends an ”"Emergency Stop” to the client ’s side, linemonitor () will

1221 produce an ”Emergency Stop” exception (type 4).

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 88
1222 %/
1223 void linemonitor_emergencystop (int sock) {
1224 unsigned char data = 254;
1225 send (sock, &data, 1, 0);
1226 }
1227
1228
1229
1230 /*x
1231 Thread used by linemonitor () NOT for direct usage.
1232 «/
1233 int linemonitor_thread (struct LINEMONITOR THREAD DATA
1234 xlinemonitor_thread_data) {
1235 // buffer for sending a ping
1236 unsigned char counter;
1237 // buffer for receiving a ping
1238 unsigned char rcounter;
1239
1240 // configuration of poll —— waiting for an event of the socket.
1241 struct pollfd polld;
1242 polld.fd = linemonitor_thread_data —> sock;
1243 polld .events = POLLIN | POLLPRI;
1244
1245
1246 while (1) {
1247 // increase counter , prevent ”Emergency Stop”’—Code 254
1248 counter++;
1249 if (counter == 254) {
1250 counter = 0;
1251 }
1252
1253 // send a ping
1254 if (send(linemonitor_thread_data —> sock, &counter, 1, 0) !'= 1) {
1255 linemonitor_thread_data —> linemonitor_exception (
1256 linemonitor_thread_data —> server ,
1257 linemonitor_thread_data —> port, 0);
1258 break;
1259 }
1260
1261 // Test, if Ping returns within the soft—timeout time, if not
1262 // cause exception
1263 if (poll(&polld, 1, linemonitor_thread_data —> soft_msec) <= 0) {
1264 linemonitor_thread_data —> linemonitor_exception (
1265 linemonitor_thread_data —> server ,
1266 linemonitor_thread_data —> port, 1);
1267 // Test, if Ping returns within the soft—timeout plus
1268 // hard—timeout time, if not cause exception
1269 if (poll(&polld, 1, linemonitor_thread_data —> hard msec) <= 0) {
1270 linemonitor_thread_data —> linemonitor_exception (
1271 linemonitor_thread_data —> server ,
1272 linemonitor_thread_data —> port, 2);
1273 }
1274 }
1275
1276 // receive the ping
1277 if (recv(linemonitor_thread_data —> sock, ((char %) &rcounter), 1,
1278 MSGWAITALL) != 1) {
1279 linemonitor_thread_data —> linemonitor_exception (
1280 linemonitor_thread_data —> server ,
1281 linemonitor_thread_data —> port, 0);
1282 break;
1283 }
1284
1285 // If ?Emergency Stop” code was received , call ”Emergency Stop”

1286 // exception and retry to receive a ping

APPENDIX C: SOURCE CODE OF THE NETWORK LIBRARY 89

1287 if (rcounter == 254) {

1288 linemonitor_thread_data —> linemonitor_exception (

1289 linemonitor_thread_data —> server ,

1290 linemonitor_thread_data —> port, 4);

1291

1292 if (recv(linemonitor_thread_data —> sock, ((char %) &rcounter),
1293 1, MSGWAITALL) != 1) {

1294 linemonitor_thread_data —> linemonitor_exception (

1295 linemonitor_thread_data —> server ,

1296 linemonitor_thread_data —> port, 0);

1297 break;

1298 }

1299 }

1300

1301 // Test on right transmission code and call ”Transmission Fault”
1302 // exception if the data is currupted

1303 if (counter != rcounter) {

1304 linemonitor_thread_data —> linemonitor_exception (

1305 linemonitor_thread_data —> server ,

1306 linemonitor_thread_data —> port, 3);

1307 }

1308

1309 // Wait before sendin next ping

1310 if (poll(&polld, 1, linemonitor_thread_data —> wait_msec) <= 0) {
1311

1312 }

1313

1314 pthread_exit (NULL);

1315 1}

1316

1317

1318

1319 /xx

1320 Monitor if the ”line” is fast enough: Client/Robot Application. This
1321 function opens a socket stream, sents pings/bytes and wait for them
1322 to come back. The soft —timeout will called after soft_msec is
1323 timeouted . The hard—timeout will called after soft—timeout was
1324 called AND hard_msec is timeouted. wait_msec specifies the time
1325 which is waited after a ping is received befor the next one will be
1326 launched .

1327

1328 @param server (char *) server to be connected

1329

1330 @param port (int) port to be connected

1331

1332 @param soft_msec (int) timeout in milliseconds which causes

1333 soft —real —time exception.

1334

1335 @param hard_msec (int) timeout in milliseconds which causes

1336 hard—real —time exception.

1337

1338 @param wait_msec (int) timeout for resent —— sending of the next
1339 ping .

1340

1341 @param linemonitor_exception (pointer to function) This function
1342 will be called if an exception occurs. It becomes the following
1343 parameters: server name (char *) which is always null, port (int):
1344 listend port and type (int) of exception which can be: 0: Connicion
1345 Fault , 1: Soft Real Time Exception, 2: HARD Real Time Exception, 3:
1346 Transmission Fault, 4: Emergency Stop.

1347 x/

1348 int linemonitor (char xserver , int port,

1349 int soft_msec, int hard_msec, int wait_msec,

1350 void (*linemonitor_exception)(char *server , int port,

1351 int type)) {

APPENDIX D: API OF THE INTERFACE

1352

1353 // ID and atributes for the threads

1354 pthread_t thrd_2;

1355 pthread_attr_t thrd_2_attr;

1356

1357 // allocate memory to store parameter for the

1358 // linemonitor_thread () function.

1359 struct LINEMONITOR.THREAD DATA xlinemonitor_thread_data;
1360 linemonitor_thread_data = (struct LINEMONITOR. THREAD DATA i)
1361 malloc(sizeof (struct LINEMONITOR THREAD DATA));
1362 if (linemonitor_thread_data == NULL) {

1363 perror ("malloc ()”);

1364 return —1;

1365 }

1366

1367 // connect to server

1368 linemonitor_thread_data —> sock = socket_connect(server , port);
1369 if (linemonitor_thread_data —> sock <= 0) {

1370 linemonitor_exception (server , port, 0);

1371 return —1;

1372 }

1373

1374 // store all necessary parameters in this memory
1375 linemonitor_thread_data —> server = server;

1376 linemonitor_thread_data —> port = port;

1377 linemonitor_thread_data —> soft_msec = soft_msec;
1378 linemonitor_thread_data —> hard_msec = hard_msec;
1379 linemonitor_thread_data —> wait_msec = wait_msec;
1380 linemonitor_thread_data —> linemonitor_exception =
1381 linemonitor_exception;

1382

1383 // launch linemonitor_thread ()

1384 pthread_attr_init(&thrd_2_attr);

1385 return pthread_create(&thrd_2,

1386 &thrd_2_attr ,

1387 (void *) linemonitor_thread,
1388 linemonitor_thread_data);
1389 }

1390

Appendix D: API of the Interface

interface.c(3) interface.c(3)

NAME

interface.c - Implementation of an example interface to a
simple robot with two independent axies.

SYNOPSIS
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <asm/io.h>

APPENDIX D: API OF THE INTERFACE

#include <time.h>
#include <sys/wait.h>

Defines
#define interface_ymax_time 20000
Time it rakes to drive to robot form y_min to y _max.
#define interface_xmax_time 20000
Time it rakes to drive to robot form x min to x max.
#define interface_ymax 100
Maximal Y value (cosidered as 100 percent).
#define interface_xmax 100
Maximal X value (cosidered as 100 percent).
#define interface_ioport 0x378
I0 Port to which lowest nible to robot is connected.

Functions
unsigned char input (int addr)
Read a byte from an IO port.
unsigned char output (int addr, unsigned char out)
Write a byte to an IO port.
void msleep (int msec)
Wait a specified number of milliseconds.
int getmax (int a, int b)
Get to highest number out of two input numbers.
int getmin (int a, int b)
Get to lowest number out of two input numbers.
void interface_drive (int h, int v)
Drive the robot in a specified direction.
void interface_init (int mode)
Initialze the interface and drive the robot to the

start position.
void interface_driveto (int x, int y)
Drive to robot to absolute coordinates.
void interface_stop O
Stop the interface, switch all off.

Variables
int interface_x
current X possition of robot (global).
int interface_y
current X possition of robot (global).

int Interface_mode
mode of interface: O0: normal, 1: simulation (do all

APPENDIX D: API OF THE INTERFACE

except to drive the robot), 2: simulation with
position-output 3: Blocked: Do nothing.

DETAILED DESCRIPTION

Implementation of an example interface to a simple robot
with two independent axies.

The robot has four inputs whish are connected to the lower
nible on I0 port ’interface_ioport’. The bits are
connected in this way (the signals a high-active):

Bit 0: Drive Up wires: switch to GND: yellow-green; +24V:
gray-black

Bit 1: Dirve down wires: switch to GND: red-green; +24V:
orange-black

Bit 2: Dirve right wires: switch to GND: green-red; +24V:
yellow-black

Bit 3: Dirve left wires: switch to GND: white-red; +24V:
red-blue

power wires: GND: blue; +24V: red

This interface assumes a linear dependency betwenn the
coverence of distance and moving time. The 0,0 coordinates
is left,bottom.

User functions are:

interface_init() - Initialze the interface and drive the
robot to the start position (X=undefined; Y=0).

interface_driveto(int x, int y) - Drive the robot to the
absolute coordinates x,y.

DEFINE DOCUMENTATION
define interface_ioport 0x378

I0 Port to which lowest nible to robot is connected.

define interface_xmax 100
Maximal X value (cosidered as 100 percent).

APPENDIX D: API OF THE INTERFACE

define interface_xmax_time 20000

Time it rakes to drive to robot form x_min to x_max.

define interface_ymax 100
Maximal Y value (cosidered as 100 percent).

define interface_ymax_time 20000

Time it rakes to drive to robot form y_min to y_max.

FUNCTION DOCUMENTATION
int getmax (int a, int b)
Get to highest number out of two input numbers.

Parameters:

a (int) first input number
b (int) second input number
Returns:

(int) the highest of the input numbers

int getmin (int a, int b)
Get to lowest number out of two input numbers.

Parameters:

a (int) first input number
b (int) second input number
Returns:

(int) the lowest of the input numbers

unsigned char input (int addr)
Read a byte from an IO port.

Parameters:

addr (int): address of port to read

93

APPENDIX D: API OF THE INTERFACE

Returns:
(unsigned char) read byte

void interface_drive (int h, int v)
Drive the robot in a specified direction.

Any axies can be zero, greater than zero or less than
zero, in this cases the robot will not driven, driven to
increase to position (uplv,yl or right[h,x]) and decrease
the position (down[-v,-y] or left[-h,-x]).

Parameters:

h (int) horizontal or X axias.

(int) vertical or Y axias.

I<

void interface_driveto (int x, int y)
Drive to robot to absolute coordinates.

Parameters:
X (int): absolute x coordinate
y (int): absolute y coordinate

void interface_init (int mode)
Initialze the interface and drive the robot to the start
position.

void interface_stop ()
Stop the interface, switch all off.

void msleep (int msec)
Wait a specified number of milliseconds.
Parameters:
msec (int): milliseconds to wait

unsigned char output (int addr, unsigned char out)
Write a byte to an IO port.

94

APPENDIX E: SOURCE CODE OF THE INTERFACE 95

Parameters:
addr (int): address of port to write onto
out (unsigned char): byte to write

Returns:
(unsigned char) written byte

VARIABLE DOCUMENTATION
int interface_mode
mode of interface: 0: normal, 1: simulation (do all except
to drive the robot), 2: simulation with position-output 3:
Blocked: Do nothing.

int interface_x
current X possition of robot (global).

int interface_y
current X possition of robot (global).

AUTHOR

Generated automatically by Doxygen for
Hofmeier_FYP:libcomm from the source code.

Hofmeier_FYP:1libcomm 25 Apr 2005 interface.c(3)

Appendix E: Source Code of the Interface

E.1 src/example/interface.c

/%
Qfile

Implementation of an example interface to a simple robot with two
independent axies. The robot has four inputs whish are connected to
the lower nible on IO port ”"interface_ioport”. The bits are

S Uk W N

APPENDIX E: SOURCE CODE OF THE INTERFACE

connected in this way (the signals a high—active):

Bit 0: Drive Up

wires: switch to GND: yellow—green; +24V: gray—black
Bit 1: Dirve down

wires: switch to GND: red—green; +24V: orange—black
Bit 2: Dirve right

wires: switch to GND: green—red; +24V: yellow—black
Bit 3: Dirve left

wires: switch to GND: white—red; +24V: red—blue

power wires: GND: blue; +24V: red

This interface assumes a linear dependency betwenn the coverence of
distance and moving time. The 0,0 coordinates is left ,bottom.

User functions are:

interface_init () — Initialze the interface and drive the robot to
the start position (X=undefined; Y=0).

interface_driveto (int x, int y) — Drive the robot to the absolute
coordinates x,y.

*/

/%
Copyright (c¢) Andreas Hofmeier
(www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful , but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <asm/io.h>
#include <time.h>
#include <sys/wait.h>

/*% Time it rakes to drive to robot form y_min to y max */
#define interface_ymax_time 20000 // at 6 bar

/*% Time it rakes to drive to robot form x_min to x_max */
#define interface_xmax_time 20000 // 34670

/*% Maximal Y value (cosidered as 100 percent) */

#define interface_ymax 100

/*% Maximal X value (cosidered as 100 percent) =/

#define interface_xmax 100

/#* I0 Port to which lowest nible to robot is connected x/

96

APPENDIX E: SOURCE CODE OF THE INTERFACE

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

#define interface_ioport 0x378

/#* current X possition of robot (global) x/
int interface_x;
/#* current X possition of robot (global) x/
int interface_y;

/*% mode of interface:
0: normal,

1: simulation (do all except to drive the robot),

2: simulation with position—output
3: Blocked: Do nothing =/
int interface_mode;

/%%
Read a byte from an IO port
@param addr (int): address of port to read
@return (unsigned char) read byte
*/
unsigned char input(int addr) {
if (interface_mode == 0) {
return inb (addr);

return 255;

}

/%%
Write a byte to an IO port
@param addr (int): address of port to write onto
@param out (unsigned char): byte to write
@return (unsigned char) written byte

*/
unsigned char output(int addr, unsigned char out) {
if (interface_mode == 0) {
outb (out, addr);
return out;
}
return out;
}
/%

Wait a specified number of milliseconds

@param msec (int): milliseconds to wait
*/
void msleep (int msec) {

int sec = msec / 1000;

msec = msec — sec *x 1000;

sleep (sec);

usleep (msec * 1000);

/%

Get to highest number out of two input numbers

@param a (int) first input number

@param b (int) second input number

@return (int) the highest of the input numbers
*/
int getmax(int a, int b) {

if (a>Db) {

return a;

} else {

97

APPENDIX E: SOURCE CODE OF THE INTERFACE 98

137 return b;

138 }

139}

140

141

142 /%%

143 Get to lowest number out of two input numbers
144 @param a (int) first input number

145 @param b (int) second input number

146 @return (int) the lowest of the input numbers
147 */

148 int getmin(int a, int b) {

149 if (a <b) {

150 return a;

151 } else {

152 return b;

153 }

154 }

155

156

157 /*x%

158 Drive the robot in a specified direction. Any axies can be zero,
159 greater than zero or less than zero, in this cases the robot will
160 not driven, driven to increase to position (up[v,y] or right[h,x])
161 and decrease the position (down[—v,—y] or left[—h,—x]).
162

163 @param h (int) horizontal or X axias.

164 @param v (int) vertical or Y axias.

165 */

166 void interface_drive(int h, int v) {

167 unsigned char buf;

168

169 buf = 0;

170 /* Y Axies x/

171 if (v >0){

172 buf = buf | 1;

173 }

174 if (v <0){

175 buf = buf | 2;

176 }

177 /* X Axies */

178 if (b >0){

179 buf = buf | 4;

180

181 if (h <0){

182 buf = buf | 8;

183 }

184

185 /* Apply */

186 buf = buf | (input(interface_ioport) & 240);
187 output (interface_ioport , buf);

188}

189

190

191 /*x

192 Initialze the interface and drive the robot to the start position.
193 */

194 void interface_init (int mode) {

195 if ((mode < 0) || (mode > 3)) {

196 mode = 2;

197 }

198 interface_mode = mode;

199

200 // enable access to IO ports (need root previleges)

201 if (interface_mode == 0) {

APPENDIX E: SOURCE CODE OF THE INTERFACE

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

if (iopl(3) < 0) {
perror ("iopl ()”);

// exit (1);
interface_mode = 2;
}
}
switch (interface_mode) {
case 0:
fprintf(stderr, ”"Interface full active.\n”);
break ;
case 1:
fprintf(stderr, ”Interface disabled.\n”);
break;
case 2:
fprintf(stderr, ”Interface disabled: position output\n”);
break;
}

fprintf(stderr, ”Initialze interface (moving to x=50,y=0)...\n”);

// drive to the coordinates 7, 0

// x will not be driven, because it is too noisy and slowly

interface_drive (0, —1);

// code for "normal” drive—time for 0,0

/* if (interface_xmax_time > interface_ymax_time) {
msleep (interface_xmax_time + interface_xmax_time /5);

} else {
msleep (interface_ymax_time + interface_ymax_time /5);
b/

// code for Y—drive—time only

msleep (interface_ymax_time + interface_ymax_time/5);

interface_drive (0, 0);

// set coordinates to 7, 0

interface_x = 50;
interface_y = 0;
}
/%%
Drive to robot to absolute coordinates
@param x (int): absolute x coordinate
@param y (int): absolute y coordinate
*/
void interface_driveto(int x, int y) {
int i;

// absulute coordinates are in range?
if (x > interface_xmax) {

x = interface_xmax;
if (x <0){
x = 0;

if (y > interface_ymax) {
y = interface_ymax;

if (y <0){
y = 0;
}

// calculate relative coordinates
x = (x — interface_x);
y = (y — interface_y);

99

APPENDIX E: SOURCE CODE OF THE INTERFACE

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

// store new coordinates
interface_x += x;
interface_y +=y;

// if (interface_mode == 2) {
fprintf(stderr, ”"x = %03d ; y = %03d\n”,
interface_x , interface_y);
/Y

// if any change has to be done...
if ((x '=0) | (v !'=0)){

// convert the relative distance into a time in which this

// distance is covered
x = (int) ((double)

(((double) x % (double) interface_xmax_time)

/ (double) interface_xmax));
y = (int) ((double)

(((double) y * (double) interface_ymax_time)

/ (double) interface_ymax));

// if the drive—time for both axies is not equal, drive the

// greater time as long as the times are equal
if ((x!=0) && (y !'=0)) {
interface_drive(x, y);
msleep (getmin (abs(x), abs(y)));
interface_drive (0, 0);

x = x/abs(x) * (abs(x)
y = y/abs(y) * (abs(y) —

}

// if there is any time left , drive these
i ((x 1= 0) || (v = 0)) {
interface_drive (x, y);
msleep (getmax (abs(x), abs(y)));
interface_drive (0, 0);

}

i = getmin(abs(x), abs(y));
— i
i

}

/*% Stop the interface , switch all off. %/
void interface_stop () {

fprintf(stderr , ”interface_stop ()\n”);
// block the interface

interface_mode = 3;

// switch all off.

// interface_drive (0, 0);

interface_drive do not work, because ”interface_mode = 3”

/]
// switches to IO—access off. For this reason,
// directly used.

ou

the functions

tb((inb(interface_ioport) & 240), interface_ioport);

were

100

APPENDIX F: SOURCE CODE OF THE GUI 101

Appendix F: Source Code of the GUI

F.1

src/example/guicommon.c

/*% @file Function for drawing the robot and to calculate the absolute

*/
/%

*/

#i
#i
#i
#i
#i
#i
#i

postion of the robot out of the mouse—position.

Copyright (c¢) Andreas Hofmeier
(www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

nclude <time.h>
nclude <math.h>
nclude <pthread.h>
nclude <stdio.h>
nclude <stdlib .h>
nclude <gtk/gtk.h>
nclude <glib .h>

/*% Function for drawing the robot and to calculate the absolute

*/

postion of the robot out of the mouse—position.

@param widget (GtkWidget *) pointer to affected object (drawing
area).

@param x (int *) pointer to absolute x position of the robot (will
changed if mouseaction equal to 1 or 2)

@param y (int *) pointer to absolute y position of the robot (will
changed if mouseaction equal to 1 or 2)

@param mx (int) x mouse position (only relevant if mouseaction
equal to 1 or 2)

@param my (int) y mouse position (only relevant if mouseaction
equal to 1 or 2)

@param mouseaction (int) current action: 1: start moving, 2:
moving or finish moving, other: plot only

void gui_common_drawrobot (GtkWidget *widget, int *x, int =y,

int mx, int my, int mouseaction) {

APPENDIX F: SOURCE CODE OF THE GUI 102

59

60 // drawing area properties

61 gint new_width, new_height;

62 int height , width;

63

64 // width and hieght of the illustration of the moving platform of
65 // the robot.

66 int hwidth, wwidth;

67

68 // current position of the moving platform
69 int x0, y0;

70

71 // new position of the moving platform

72 int xOn, yOn;

73

74 // current action: 0: draw only, 1: during moving, 2: error: click
75 // outside from platform

76 static int moving = 0;

7

78 // offset for mouse—moving

79 static int ox, oy;

80

81 // get size of the drawing area

82 gdk_drawable_get_size (widget—>window ,

83 &new_width ,

84 &new_height);

85 width = (int) new_width;

86 height = (int) new_height;

87

88 // clear it

89 gdk_window_clear_area (widget—>window,

90 0,0,

91 width , height);

92

93 // calculate the width and hieght of the illustration of the moving
94 // platform of the robot.

95 hwidth = 10 % height / 100;

96 wwidth = 10 * width / 100;

97

98 // moving or moving finished

99 if (mouseaction == 2) {

100 moving = 0;

101 }

102 if (moving == 1) {

103 // calculate the new position of the platform and set the
104 // variables

105 *x = ((mx — ox) % 100) / (width — wwidth);
106 xy = (((my + oy) * (—=1) + (height — hwidth)) % 100) / (height — hwidth);
107

108 // platform must not beyond the window bondaries
109 if (xx > 100) {

110 *x = 100;

111 }

112 if (+,x < 0) {

113 #x = 0;

114 }

115 if (xy > 100) {

116 xy = 100;

117 }

118 if (xy < 0) {

119 xy = 0;

120 }

121 }

122

123 // draw the horizontal (X) axies track of the robot, whish is NOT

APPENDIX F: SOURCE CODE OF THE GUI 103

124 // moving
125 y0 = ((0 * (height — hwidth) / 100) — (height — hwidth)) * (—1);
126 gdk_draw_line (widget—>window,
127 widget—>style —>black_gc ,
128 0,y0,
129 width ,y0);
130 gdk_draw_line (widget —>window ,
131 widget—>style —>black_gc ,
132 0,y0 4+ hwidth,
133 width ,y0 + hwidth);
134
135 // Draw the current possition of the movind platform of the
136 // robot. Illustrated as a black rectangular.
137 // +— calculate it’s current position
138 x0 = xx % (width — wwidth) / 100;
139 y0 = ((+y * (height — hwidth) / 100) — (height — hwidth)) x (—1);
140 // +— draw lines under it.
141 gdk_draw_line (widget—>window ,
142 widget—>style —>black_gc ,
143 x0,y0,
144 x0, height);
145 gdk_draw_line (widget—>window ,
146 widget—>style —>black_gc ,
147 x0 4+ wwidth,y0,
148 x0 + wwidth, height);
149 // +— draw the platform
150 gdk_draw_rectangle (widget—>window ,
151 widget—>style —>black_gc ,
152 1,
153 x0,y0,
154 wwidth , hwidth);
155
156 // start moving the platform
157 if ((moving == 0) && (mouseaction == 1)) {
158 if ((mx > x0) && (mx < (x0 + wwidth))
159 && (my > y0) && (my < (y0 + hwidth))) {
160 // click inside form platform —— moving...
161 moving = 1;
162 // offset for moving
163 ox = mx — x0;
164 oy = y0 — my;
165 } else {
166 // error , click outside from platform
167 moving = 2;
168 }
169 }
170}
171
172
F.2 src/example/guirobot.c
1/
2 @file
3
4 Robot—Side application with GUI (simulator) to control the robot.
5 x/
6
7 #include <time.h>
8 #include <math.h>
9 #include <pthread.h>
10 #include <stdio.h>

APPENDIX F: SOURCE CODE OF THE GUI 104

#include <stdlib.h>
#include <gtk/gtk.h>
#include <glib .h>

#include <unistd.h>
#include <signal.h>
#include <gdk/gdk.h>

#include ”../1ib/libcomm.h”
#include ”guicommon.h”

// Pointer to the Main—Application—Object. Is necessary if a function
// of the GUI is called from a not—gui—object.
GtkWidget *gr_application;

// Pointer to the DrawinArea—Object. Is necessary if a function
// of the DrawingArea is called from a not—gui—object.
GtkWidget *da_global;

// Stores the absolut position of the robot.
int robot_x = 50, robot_y = 0;

// Configuration for LineMonitor. Stores the Soft — and Hard—Timeout
// and wait—times.

int soft_msec;

int hard_msec;

int wait_msec;

// Indicates the the ”system” is shutting down. Do not launch further
// command to the GUI
int shut_down;

// Stores the portnumber on which the server operates. serverport:
// Datalink (local/bind); serverport + 1: Linemonitor (remote/connect).
int serverport;

/%%
@param widget (GtkWidget *) pointer to affected object (for
example: window).
@param event (GdkEventM %) pointer to structure which
describes the event.
@param data (gpointer) pointer to additional data from gtk.
*/

static gbooleandelete_event (GtkWidget *widget ,
GdkEvent xevent,
gpointer data) {

interface_stop (); // 77
fprintf(stderr , ”Shut down...\n”);
gtk_main_quit ();

return FALSE;

/*x This function will be called be gtk when the window gets a closing
command, it makes sure that the interface is down and the program
is finished .

@param widget (GtkWidget *) pointer to affected object (for
example: window).

APPENDIX F: SOURCE CODE OF THE GUI 105

76

77 @param data (gpointer) pointer to additional data from gtk.
78 */

79 void gr_delete_event (GtkWidget xwidget , gpointer data) {

80 interface_stop ();

81 shut_down = 1;

82 fprintf(stderr , ”Shut down...\n”);

83 gtk_main_quit ();

84 gdk_window_process_all_updates ();

85}

86

87

88 /x% This function is called if a signal (line C-c, terminate)
89 occurs. See in signal() —calls in main() for detals.

90

91 @param sig (int) number of orrured signal

92 %/

93 static void finish (int sig) {

94 gr_delete_event (gr_application , NULL);

95 }

96

97

98 /x# This function is called by gtk if the drawing area (da) needs to
99 be redrawn. For example if it becomes visible.

100

101 @param widget (GtkWidget =) pointer to affected object (in this
102 case the drawing area).

103

104 @param data (gpointer) pointer to additional data from gtk.
105 */

106 void gr_da_expose_event (GtkWidget *widget , gpointer data) {
107 gui_common_drawrobot (widget, &robot_x, &robot_y, —1, —1, 0);
108}

109

110

111

112 /*x This function is called if a button is pressed

113

114 @param widget (GtkWidget *) pointer to affected object (button).
115

116 @param event (GdkEventMotion *) pointer to structure which
117 describes the event.

118 */

119

120 void gr_button_press_event (GtkWidget xwidget , gpointer data) {
121 if (stremp (?Emergency Stop”, (char x)data) == 0) {

122 gr_delete_event (gr_application , NULL);

123 g_print (”Emergency Stop Button pressed\n”);

124

125 }

126

127

128 /xx

129 Function which is called from block_call () if a

130 message/datablock has received. See API of block_call ().
131 x/

132 gr_block_call_do_test(int fd, int id, unsigned int type, char xbuf,
133 unsigned int size, int term) {

134 struct ROBOT_POSITION *xrobot_position

135

136 // do mnothing, if the system is shutting down

137 if (shut_down) {

138 return ;

139 }

140

APPENDIX F: SOURCE CODE OF THE GUI 106

141 if ((sizeof(struct ROBOTPOSITION) == size) && (type == 1)) {

142 // load new position of the robot from the received package

143 robot_position = (struct ROBOT_POSITION x) buf;

144 robot_x = robot_position —> x;

145 robot_y = robot_position —> y;

146 free (robot_position);

147

148 // drive robot to the new coordinates

149 interface_driveto (robot_x , robot_y);

150

151 // make sure, that thre is no conflict with the

152 // gdk—main—loop. This is a locking—mechanism which privents
153 // 7Xlib: unexpected async reply”s

154 gdk_threads_enter ();

155

156 // re—draw the robot with the new coordinates

157 gui_common_drawrobot (da_global, &robot_x, &robot_y, —1, —1, 0);
158

159 // make sure, that all changed item are really plotted n the screen
160 gdk_window_process_all_updates ();

161

162 // unlock gdk—main—loop

163 gdk_threads_leave ();

164

165 // some of the other tries to force a re—draw of the screen —— all
166 // useless!

167 / * while (gtk_events_pending () && !shut_down) {

168 gtk_main_iteration ();

169 }ox/

170 // gdk_flush ();

171 // da_global —>queue_draw ();

172 // gtk_widget_draw (da_global , da_global);

173 / * gtk_widget_queue_draw (da_global);

174 gtk_widget_queue_draw (gr_application);*/

175 // gtk_widget_queue_clear (da_global —>window);

176 // da_global —> queue_draw ();

177 // gtk_widget_draw (da_global , NULL);

178 / * gtk_signal_emit_by_name (da_global , ”expose_event”,

179 NULL, 1);%/

180 // gtk_signal_emit_by_name (GTK.OBJECT(da_global), ”changed”);
181 // gtk_signal_emit_by_name (GTK OBJECT(da_global), ”expose_event”);
182 // gtk_widget_show_all (da_global);

183 // gdk_window_hide (da_global—>window);

184 // gdk_window_show (da_global —>window);

185 // gdk_window_get_update_area(da_global —>window);

186 // gtk_widget_queue_draw (da_global);

187 } else {

188 if (type !=1) {

189 fprintf(stderr, "+ WARNING: Unknown type of datablock received!\n”);
190 } else {

191 fprintf (stderr , ”"xx WARNING: Datablock with improper size received!\n”);
192 }

193 }

194}

195

196

197 /%% Exception function for the linemonitor (), print exception code and
198 its meaning on the screen and take further action if

199 necessary . See API of linemonitor (). */

200 linemonitor_exception(char *server, int port, int type) {

201 fprintf(stderr, ”linemonitor_exception(%s, %d, %d): 7,

202 server , port, type);

203 switch (type) {

204 case 0:

205 fprintf(stderr , ” Connecion Fault\n”);

APPENDIX F: SOURCE CODE OF THE GUI 107

206 gr_delete_event (gr_application , NULL);

207 break;

208 case 1:

209 fprintf(stderr , ”Soft Real Time Exception\n”);
210 break;

211 case 2:

212 fprintf(stderr , "HARD Real Time Exception\n”);
213 gr_delete_event (gr_application , NULL);

214 break;

215 case 3:

216 fprintf(stderr , " Transmission Fault\n”);

217 gr_delete_event (gr_application , NULL);

218 break ;

219 case 4:

220 fprintf(stderr , ”Emergency Stop\n”);

221 gr_delete_event (gr_application , NULL);

222 break;

223 } /* switch () */

224

225

226

227

228 [xx

229 Function which ist called from block_call () if a the connection
230 terminates: shut down system. See block_call () API.
231 %/

232 gr_block_call_term_test (int fd, int id) {

233 gr_delete_event (gr_application , NULL);

234 1}

235

236

237

238 /xx

239 Function which is called from socket_accept () if someone has
240 connected . See socket_accept () API.

241 x/

242 gr_socket_accept_do(int fd, int id, char =pip,
243 struct sockaddr_in their_addr , int term) {
244

245 // starting line—monitor

246 char xpard = inet_ntoa(their_addr.sin_addr);

247 linemonitor (pard, serverport + 1,

248 soft_msec , hard_msec, wait_msec,

249 linemonitor_exception);

250

251

252 // waiting for incomming data in an other thread
253 block_call(fd, id, false,

254 (void %) gr_block_call_do_test ,

255 (void *) gr_block_call_term_test);
256}

257

258

259

260

261

262

263 int main(int argc, char sxargv|[]) {

264 // file discriptor for the local bind.

265 int sock;

266

267 // GTK-Objecte. This is necessary to create the buttons on the
268 // screen and connect them to some actions

269 GtkWidget *buttonl, *button2, *button3, *xbuttond;

270 // Sorting into tables.

APPENDIX F: SOURCE CODE OF THE GUI 108

271 GtkWidget *table, xtable2;

272

273 // system is not shutting down now... (it shutting up ;—)
274 shut_down = 0;

275

276 // Init the gtk (GUI toolkit) and the gdk (threads) system
277 g_thread_init (NULL);

278 gdk_threads_init ();

279 gtk_init(&arge, &argv);

280

281 // Connect the finish() —function to some signals which can cause a
282 // system shut down.

283 signal (SIGHUP, finish); // 01 / hangup — close Window
284 signal (SIGINT, finish); // 02 / Interrupt — "C — C—c
285 signal (SIGQUIT, finish); // 03 / Quit

286 signal (SIGTERM, finish); // 15 / Terminierung —— kill
287 signal (SIGALRM, finish); // 14 / Alarm

288

289 // load and examine parameters

290 if (arge == 6) {

291 serverport = atoi(argv[1l]);

292 soft_msec = atoi(argv[2]);

293 hard_msec = atoi(argv [3]);

294 wait_msec = atoi(argv[4]);

295 interface_init (2);

296 } else {

297 if (argec == 5) {

298 serverport = atoi(argv[1l]);

299 soft_msec = atoi(argv[2]);

300 hard_msec = atoi(argv[3]);

301 wait_msec = atoi(argv[4]);

302 interface_init (0);

303 } else {

304 fprintf(stderr, ”%s port—to—bind soft_msec hard_msec wait_msec\n”, argv[0]);
305 // exit (0);

306 }

307 }

308

309 // bind local port and launch socket_accept () to wait for connection
310 if ((sock = socket_bind(serverport, 10)) < 0) {

311 error ("bind ()”);

312 } else {

313 socket_accept (sock, 0, (void %) gr_socket_accept_do);
314 }

315

316 // create button(s)

317 buttonl = gtk_button_new_with_label (”Emergency Stop”);
318 /* button2 = gtk_button_new_with_label (”Button 27);

319 button3 = gtk_button_new_with_label (”Button 37);

320 button4 = gtk_button_new_with_label (”Button 47); */

321

322 // connect the buttons to the function gr_button_press_event (). If
323 // the botton is pressed, this function will be colled.
324 gtk_signal_connect (GTK.OBJECT(buttonl), ”clicked”,

325 GTK SIGNAL FUNC(gr_button_press_event),
326 ”"Emergency Stop”);

327 /* gtk_signal_connect (GTK.OBJECT(button2), ”clicked”,

328 GTK SIGNAL FUNC(gr_button_press_event),
329 ”Button 27);

330 gtk_signal_connect (GTK.OBJECT(button3), ”clicked”,

331 GTK SIGNAL FUNC(gr_button_press_event),
332 ”Button 3”7);

333 gtk_signal_connect (GTK.OBJECT(buttond), ”clicked”,

334 GTK SIGNAL FUNC(gr_button_press_event),

335 ?Button 47); x/

APPENDIX F: SOURCE CODE OF THE GUI 109

336

337 // create tables to sort buttons and drawindarea in it
338 table = gtk_table_new (2,2 ,FALSE);

339 table2 = gtk_table_new (2,2 ,FALSE);

340

341 // create new application (wiindow)

342 gr_application = gtk_window_new (GTK WINDOW_TOPLEVEL) ;
343

344 // set window title

345 gtk_window_set_title (GTKWINDOW (gr_application), ”"Robot”);

346

347 // connect the function gr_delete_event () with the event of a
348 // window—close .

349 g_signal_connect (GOBJECT (gr_application), ”delete_event”,

350 G.CALLBACK (gr_delete_event), NULL);

351

352 // display window

353 gtk_widget_show (gr_application);

354

355 // create drawing area

356 da_global = gtk_drawing_area_new ();

357

358 // set which events in the drawing area causing a expose—event
359 gtk_widget_set_events (da_global , GDKEXPOSURE MASK

360 | GDK LEAVE NOTIFY_MASK

361 | GDK BUTTON_PRESS MASK

362 | GDK_POINTER_MOTION_MASK

363 | GDK_POINTER-MOTION_HINT_MASK)) ;

364

365 // set a minimum size of drawing area

366 gtk_widget_set_size_request (da_global , 100, 100);

367

368 // connect the function gr_delete_event () with the event of a
369 // window—close .

370 gtk_signal_connect (GTK OBJECT(gr_application), ”delete_event”,
371 GTK SIGNAL_FUNC(gr_delete_event), NULL);

372

373 // connect the function gr_da_expose_event () with the expose—event
374 // of the drawing area.

375 gtk_signal_connect (GTK.OBJECT(da_global), ”expose_event”,

376 GTK SIGNAL FUNC(gr_da_expose_event), NULL);
377

378 // fill the buttons in the table

379 gtk_table_attach_defaults (GTK. TABLE(table2), buttonl, 0,1, 0,1);
380 /* gtk_table_attach_defaults (GTK.TABLE(table2), button2, 0,1, 1,2);
381 gtk_table_attach_defaults (GTK. TABLE(table2), button3, 1,2, 0,1);
382 gtk_table_attach_defaults (GTK.TABLE(table2), buttond, 1,2, 1,2); %/
383

384 // fill the drawing area and the table into another table

385 gtk_table_attach_defaults (GTK.TABLE(table), da_global, 0,1, 0,1);
386 gtk_table_attach_defaults (GTK. TABLE(table), table2, 0,1, 1,2)
387

388 // fill this table into the windos

389 gtk_container_add (GTK.CONTAINER(gr_application), table);
390

391 // display it

392 gtk_widget_show_all(gr_application);
393

394 // call gtk—main—loop

395 gtk_main ();

396

397 return 0;

398}

399

400

APPENDIX F: SOURCE CODE OF THE GUI 110

F.3

© 00O Ui W+~

src/example/guiserver.c

/xx
Qfile

Server /User—Side Application with GUI to control the robot.

*/

#include <time.h>
#include <math.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib .h>
#include <gtk/gtk.h>
#include <glib .h>
#include <unistd.h>
#include <signal.h>

#include ”../1lib/libcomm.h”
#include ”guicommon.h”

// Pointer to the Main—Application—Object. Is necessary if a function
// of the GUI is called from a not—gui—object.
GtkWidget *gs_application;

// Stores the absolut position of the robot.

int robot_x = 50, robot_y = 0;

// ... fill it into a structure to be able to transfer it
struct ROBOT_POSITION robot_position;

// Stores the portnumber on which the server operates. serverport:
// Datalink (remote/connect); serverport + 1: Linemonitor
// (local/bind).

int serverport;

// filediscriptor which pointes to the socket—stream which is
// connected to the robot’s side and used fot the data—transfer.
int sock;

// Configuration for LineMonitor. Stores the Soft — and Hard—Timeout
// and wait—times.

int soft_msec;

int hard_msec;

int wait_msec;

// File discriptor to the linemonitor () connection. Used for Emergercy
// Stop command
int ems_fd;

/%
@param widget (GtkWidget =) pointer to affected object (for
example: window).
@param event (GdkEventM %) pointer to structure which
describes the event.
@param data (gpointer) pointer to additional data from gtk.
*/

static gbooleandelete_event (GtkWidget *widget ,
GdkEvent xevent,

APPENDIX F: SOURCE CODE OF THE GUI 111

gpointer data) {

linemonitor_emergencystop (ems_fd); // 77
fprintf(stderr , ”Shut down...\n”);
gtk_main_quit ();
gdk_window_process_all_updates ();

return FALSE;

/#% This function is called if a signal (line C-c, terminate)
occurs. See in signal() —calls in main() for detals.

@param sig (int) number of orrured signal
*/
static void finish (int sig) {
gs_delete_event (gs_application , NULL);

}

/*x This function will be called be gtk when the window gets a closing
command, it makes sure that the interface is down and the program
is finished .

@param widget (GtkWidget *) pointer to affected object (for
example: window).

@param data (gpointer) pointer to additional data from gtk.

*

/
void gs_delete_event (GtkWidget xwidget , gpointer data) {

linemonitor_emergencystop (ems_fd);

fprintf(stderr , ”Shut down...\n”);

gtk_main_quit ();

gdk_window_process_all_updates ();

/*% This function is called by gtk if the drawing area (da) needs to
be redrawn. For example if it becomes visible.

@param widget (GtkWidget *) pointer to affected object (in this
case the drawing area).

@param data (gpointer) pointer to additional data from gtk.
*/
void gs_da_expose_event (GtkWidget *widget , gpointer data) {
gui_common_drawrobot (widget, &robot_x, &robot_y, —1, —1, 0);

}

/#* This function is called if an event occurs (mose motion or mouse
button press) over the drawing area (da).

@param widget (GtkWidget *) pointer to affected object (in this
case the drawing area).

@param event (GdkEventMotion *) pointer to structure which
describes the event.
*/
static gint
motion_notify_event (GtkWidget *widget , GdkEventMotion *event) {
// variables for the position of the mouse
int x, y;

GdkModifierType state;

APPENDIX F: SOURCE CODE OF THE GUI 112

128

129 // member—variable to store if a moving action takes place or not
130 static int move = 0;

131

132 // get positoin of the mouse—pointer

133 if (event—>is_hint) {

134 gdk_window_get_pointer (event—>window, &x, &y, &state);
135 } else {

136 X = event—x;

137 y = event—>y;

138 state = event—>state;

139 }

140

141 // if left mouse button is pressed

142 if (state & GDKBUTTONIMASK) {

143 // ... re—draw robot and dertermine new position of the robot if
144 // the click was on the robot

145 gui_common_drawrobot (widget, &robot_x, &robot_y, x, y, 1);
146 move = 1;

147 // if the connection to the robot is established ...

148 if (sock !=0) {

149 // ... and the position of it was changed

150 if ((robot_position.x != robot_x) ||

151 (robot_position.y != robot_y)) {

152 robot_position.x = robot_x;

153 robot_position.y = robot_y;

154

155 // ... send the new coordinates to the robot

156 block_send (sock, 1, (char %) &robot_position ,

157 sizeof (struct ROBOT_POSITION));

158 }

159

160 } else {

161 // moving event is finished , drwa robot.

162 if (move) {

163 gui_common_drawrobot (widget , &robot_x, &robot_y , x, y, 2);
164 move = 0;

165 }

166 }

167

168 return TRUE;

169}

170

171

172

173 /*x This function is called if a button is pressed

174

175 @param widget (GtkWidget =) pointer to affected object (button).
176

177 @param event (GdkEventMotion %) pointer to structure which
178 describes the event.

179 x/

180

181 void gs_button_press_event (GtkWidget xwidget , gpointer data) {
182 if (strcmp (”Emergency Stop”, (char x)data) == 0) {

183 linemonitor_emergencystop (ems_fd);

184 gs_delete_event (gs_application , NULL);

185 g_print (”Emergency Stop Button pressed\n”);

186 }

187}

188

189

190

191 /*x Exception function for linemonitor_server (), print exception
192 code and meaning on the screen and initiate appropriate

APPENDIX F: SOURCE CODE OF THE GUI 113

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

actions if necessary. See linemonitor_server () API. %/

linemonitor_exception (char *server , int port, int type) {

/*

*/

fprintf(stderr, ”linemonitor_exception(%s, %d, %d): 7,
server , port, type);

switch (type) {

case 0:
fprintf(stderr , ” Connecion Fault\n”);
gs_delete_event (gs_application , NULL);
break;

case 1:
fprintf(stderr, ” Soft Real Time Exception\n”);
break;

case 2:
fprintf(stderr , "HARD Real Time Exception\n”);
gs_delete_event (gs_application , NULL);
break;

} /% switch () */

*
Start the linemonitor_server() —— waiting for a connection in a
background—thread . This has to be a thread because otherwise the
system would block. It would wait for a connection while it is

supposed to connect itself.

thread_wait_for_linemonitor () {

}

in

ems_fd = linemonitor_server (serverport + 1,
soft_msec , hard_msec, wait_msec,
(void *) linemonitor_exception);
pthread_exit (NULL);

t main(int argc, char sargv[]) {

// GTK-Objecte. This is necessary to create the buttons on the
// screen and connect them to some actions

GtkWidget *buttonl, xbutton2, xbutton3, *buttond;

// Sorting into tables.

GtkWidget xtable, xtable2;

// pointer to the DrawingArea—Object

GtkWidget xda;

// Init the gtk (GUI toolkit)
gtk_init(&arge, &argv);

// Connect the finish() —function to some signals which can cause a
// system shut down.

signal (SIGHUP, finish); // 01 / hangup — close Window
signal (SIGINT, finish); // 02 / Interrupt — "C — C—c
signal (SIGQUIT, finish); // 03 / Quit
signal (SIGTERM, finish); // 15 / Terminierung —— kill
signal (SIGALRM, finish); // 14 / Alarm
// load and examine parameters
if (arge !'= 6) {
sock = 0;
fprintf (stderr, "%s robot—address port soft_msec hard_msec wait_msec\n”
/] exit(0);
} else {
// ID and atributes for the threads
pthread_t thrd_2;

pthread_attr_t thrd_2_attr;

, argv [0]);

APPENDIX F: SOURCE CODE OF THE GUI

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

serverport =

soft_msec =
hard_msec =
wait_msec =

atoi(argv |
atoi(argv [3
atoi(argv [4
atoi(argv [5

]
)
) .
)

// launch thread_wait_for_linemonitor (), see
// thread_wait_for_linemonitor ().
pthread_attr_init(&thrd_2_attr);
pthread_create(&thrd_2

&thrd_2_attr ,
(void %) thread_wait_for_linemonitor ,
NULL);

// make sure, that the linemonitor_server () is ready before
// connect to the robot.

sleep (1);

// connect to the robot.
if ((sock = socket_connect(argv[1l], serverport)) <= 0) {
perror ("connect ()7);

sock = 0;

}
}
// create button(s)
buttonl = gtk_button_new_with_label (”Emergency Stop”);
// button2 = gtk_button_new_with_label (”Button 27);
// button3 = gtk_button_new_with_label (”Button 37);
// buttond = gtk_button_new_with_label(”Button 47);

// connect the buttons to the function gr_button_press_event ().

// the botton is pressed, this function will be colled.
gtk_signal_connect (GTK.OBJECT(buttonl), ”clicked”,

GTK SIGNAL FUNC(gs_button_press_event),
”Emergency Stop”);

/* gtk_signal_connect (GTKOBJECT(button2), ”clicked”,

GTK SIGNAL_FUNC(gs_button_press_event),
”Button 27);

gtk_signal_connect (GTK.OBJECT(button3), ”clicked”,

GTK SIGNAL FUNC(gs_button_press_event),
?Button 37);

gtk_signal_connect (GTK.OBJECT(buttond), ”clicked”,

GTK SIGNAL FUNC(gs_button_press_event),
"Button 47);x/

// create tables to sort buttons and drawindarea in it
table = gtk_table_new (2,2 ,FALSE);
table2 = gtk_table_new (2,2 ,FALSE);

// create new application (wiindow)
gs_application = gtk_window_new (GTK WINDOW_TOPLEVEL) ;

// set window title
gtk_window_set_title (GIKWINDOW (gs_application),

// connect the function gr_delete_event () with the event of a

?Server — User Interface”);

// window—close .
g_signal_connect (GOBJECT (gs_application), ”delete_event”,

G.CALLBACK (gs_delete_event), NULL);

// display window
gtk_widget_show (gs_application);

If

114

APPENDIX G: SOURCE CODE OF THE TESTS 115

323 // create drawing area

324 da = gtk_drawing_area_new ();

325

326 // set which events in the drawing area causing a expose—event
327 gtk_widget_set_events (da, GDKEXPOSUREMASK

328 | GDK LEAVENOTIFY_MASK

329 | GDK BUTTON_PRESS MASK

330 | GDK POINTER_MOTION_MASK

331 | GDK_POINTER.MOTION_HINT_-MASK) ;

332

333 // set a minimum size of da

334 gtk_widget_set_size_request (da, 100, 100);

335

336 // connect the function gr_delete_event () with the event of a
337 // window—close .

338 gtk_signal_connect (GTK.OBJECT(gs_application), ”delete_event”,
339 GTK SIGNAL_FUNC(gs_delete_event), NULL);

340

341 // connect the function gr_da_expose_event () with the expose—event
342 // of the drawing area.

343 gtk_signal_connect (GTK.OBJECT(da), ”expose_event”,

344 GTK SIGNAL_FUNC(gs_da_expose_event), NULL);
345

346 // connect the function motion_notify_event () with the

347 // mouse—motion—event of the drawing area.

348 gtk_signal_connect(da, " motion_notify_event”,

349 GTK SIGNAL FUNC(motion_notify_event), NULL);
350

351 // fill the buttons in the table

352 gtk_table_attach_defaults (GTK TABLE(table2), buttonl, 0,1, 0,1);
353 /* gtk_table_attach_defaults (GTK.TABLE(table2), button2, 0,1, 1,2);
354 gtk_table_attach_defaults (GTK TABLE(table2), button3, 1,2, 0,1);
355 gtk_table_attach_defaults (GTK TABLE(table2), buttond, 1,2, 1,2); %/
356

357 // fill the drawing area and the table into another table

358 gtk_table_attach_defaults (GTK.TABLE(table), da, 0,1, 0,1);

359 gtk_table_attach_defaults (GTK. TABLE(table), table2, 0,1, 1,2);
360

361 // fill this table into the windos

362 gtk_container_add (GTK.CONTAINER(gs_application), table);

363

364 // display it

365 gtk_widget_show_all (gs_application);

366

367 // call gtk—main—loop

368 gtk_main ();

369

370 return 0;

371}

372

373

Appendix G: Source Code of the Tests

G.1 src/test/testO01sockets.c

1 /*x
2 @file
3

APPENDIX G: SOURCE CODE OF THE TESTS 116

67

This program tests the low—level tcp—socket—stream library function.

Copyright (c¢) Andreas Hofmeier
(www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful , but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <stdio.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <signal.h>
#include 7../1ib/libcomm.h”

/*% Port on which the server is listening and the client trys to
connect . */

#define PORT 1234

/*% How much random bytes should be transfered? x/

#define bufsize 8192

//#define bufsize 8

/*% test0001lsockts: see test000lsockts.c.
*/

main (int argc, char sxargv([]) {
// PID of the child process
int fpid;

printf (”running %s...\n”, argv[0]);

if (!(fpid = fork())) {
server_test_program (PORT);

}

client_test_program (”127.0.0.1”, PORT);
client_test_program (”localhost”, PORT);
client_test_program (”lblacky”, PORT);
client_test_program (”hofmeira.student.sbu.ac.uk”, PORT);

// kill server terst programm
kill (fpid, 15);

sleep (1);

kill (fpid , 9);

exit (0);

/*% test0001lsockts: see test000lsockts.c, Client Test Programm.

APPENDIX G: SOURCE CODE OF THE TESTS 117

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

*/

The client test program generates a block of nx(bufsize) random
bytes, sents theses bytes to the server, receive a block from
server , invert it and compare it with generated block.

BUGS: Receives only one block. If not all data ready and function
resv () do noct block, data get lost. Test fails.

@Qparam server a string which contains the server name
@param port an integer which specifies the port on the server

client_test_program (char sserver, int port) {

[s s kR kKKK K K o o oK oK oK oK K KKK KK K K K K o oK 3K 3K SR K KKK KKK K K K o oK oK 3K oK oK oK KK K
// x*x Client Test Programm

int i;

// FD of socket
int sock;

char buf[bufsize], buf2[bufsize];

printf (” Generating random numbers...\n”);
if (block_random (buf, bufsize) == NULL) {
fail ("cannot generate random numbers”, 1);

}

// Connect to server

printf (”? Try server %s...” , server);
if ((sock = socket_connect(server, port)) < 0) {
fail (”Cannot connect.”, 1);

}

// send datablock to server
send (sock , buf, bufsize, 0);

// receive datablock from server
recv (sock , buf2, bufsize, 0);

close (sock);

// invert the bits of the local datablock and
// compare it with the result from the server
// should be the same.
for (i = 0; i < bufsize; i++4+) {
if ("buf2[i] !'= buf[i]) {
fail ("some errors occure during the data transfer...”);

}

printf ("OK.\n”);
sleep (1);

/%% test0001lsockts: see test000lsockts.c, Server Test Programm.

*/

se

The server test program binds a port and waits for connections. If
someone connects it reads nx(bufsize) bytes, invert all bits of
these bytes and send all back.

BUGS: Receives only one block. If not all data ready and function
resv () do noct block, data get lost. Test fails.

@param port an integer which specifies the port to bind.

rver_test_program (int port) {

APPENDIX G: SOURCE CODE OF THE TESTS 118

135 // x*x Server Test Program

136

137 // buffer for storing data.

138 char buf[bufsize |;

139

140 // FD of socket which is bounded to the port
141 int sockport;

142 // FD of socket

143 int sock;

144

145 /#* connector ’s address information x/

146 struct sockaddr_in their_addr;

147 int sin_size;

148

149

150 // Bind port

151 printf (” binding port %d on localhost...”, port);
152 if ((sockport = socket_bind(port, 10)) < 0) {
153 fail (”Cannot bind port.”, 1);

154 }

155

156 while (1) {

157 // accept connection

158 sin_size = sizeof(struct sockaddr_in);

159 if ((sock = accept(sockport, (struct sockaddr *) &their_addr,
160 &sin_size)) I= —1) {

161 int i, size;

162 char xpard = inet_ntoa(their_addr.sin_addr);
163 fprintf(stdout, ” got connection from %s\n”, pard);
164

165 // receive datablock from client

166 size = recv(sock, buf, bufsize, 0);

167 // invert the bits of thh whole datablock
168 for (i = 0; i < size; i+4+4){

169 buf[i] = “buf[i];

170 }

171 // send datablock to client

172 send (sock , buf, size, 0);

173

174 close (sock);

175 }

176 }

177}

G.2 src/test/test002integer.c

1 /[

2 @file

3

4 This program tests the size and the organisation of an integer on
5 the local machine, with the local compiler.

6

7T %/

8

9 /%

10 Copyright (c) Andreas Hofmeier

11 (www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

12

13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by

15 the Free Software Foundation; either version 2 of the License, or

APPENDIX G: SOURCE CODE OF THE TESTS 119

16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful, but

19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

21 General Public License for more details.

22

23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software

25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

26 %/

27

28 #include <stdio.h>

29

30

31 main(int argc, char xargv[]) {

32 unsigned int i;

33 int size = sizeof(i);

34 unsigned char *xs, c;

35

36 // make sure, that the size of the integer is greater or equal than
37 // two bytes

38 printf (”testing integer...\n”);

39 printf (”? sizeof(int) = %d Bytes (%d Bits)\n”, size, size =* 8);
40 if (size < 2) {

41 fail ("The size of integer must be greater or equal that two 7 \
42 "bytes (or 16 bits)”, 1);

43

44 s = (char) &1i;

45 printf (” organisation: 7);

46 for (i = 1; i <=128; i =1 * 2) {

47 ¢ = (unsigned char) i;

48 it ((s[0] '= ¢) ||

49 (s[1] '=0)) {

50 fail ("organisation of Integer is on this machine different , ” \
51 ?than the library expect.”, 1);

52

53 printf("%d 7, i);

54 }

55 for (i = 256; i <= 32768; i =1 % 2) {

56 ¢ = (unsigned char) (i / 256);

57 it ((s[0] !'= 0) |]

58 (s[1] 1= c)) {

59 fail ("organisation of Integer is on this machine different , ” \
60 ?than the library expect.”, 1);

61 }

62 printf("%d ", i);

63

64 printf (” OK.\n”);

65 exit (0);

66 }

G.3 src/test/test003block.c

/%%
@file

This program tests the low—level block transfer and authentication
functions.

*/

0O ULk WN -

APPENDIX G: SOURCE CODE OF THE TESTS 120

9 /=

10 Copyright (c) Andreas Hofmeier

11 (www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

12

13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or

16 (at your option) any later version.

17

18 This program is distributed in the hope that it will be useful, but

19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

21 General Public License for more details.

22

23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software

25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

26 x/

27

28

29 #include <stdio.h>

30 #include <arpa/inet.h>
31 #include <sys/types.h>
32 #include <signal.h>

33 #include ”libcomm.h”
34 #include <unistd.h>

35

36

37 /x% Port on which the server is listening and the client trys to
38 connect. */

39 #define PORT 1235

40 /x+ How much random bytes should be transfered? */

41 #define bufsize 8192

42 /x% The ID which identifies the thread of the block_call ()

43 function. This value can be coosen arbitrary and is passwd to all
44 called functions. %/

45 +#define threadid 1234

46 //#define bufsize 8

47

48 /x% test0001lsockts: see test000lsockts.c.
49 x/

50

51 main(int argc, char xargv[]) {

52 // PID of the child process

53 int fpid;

54 int iport = PORT;

55

56 printf (’running %s...\n”, argv[0]);

57

58 printf (” trying blocked read mode... ”);
59 fflush (stdout);

60 if (!(fpid = fork())) {

61 server_test_program (iport, 0);

62 }

63

64 client_test_program (”localhost”, iport++4, 0);
65

66 // kill server terst programm

67 kill (fpid, 9);

68

69

70 printf (” trying non—blocked read mode... 7);
71 fflush (stdout);

72 if (!(fpid = fork())) {

73 server_test_program (iport , 1);

APPENDIX G: SOURCE CODE OF THE TESTS 121

74 }

75 client_test_program (”localhost”, iport+-+, 0);
76

77 // kill server terst programm

78 kill (fpid, 9);

79

80 printf (” trying function—call read mode... 7);
81 fflush (stdout);

82 if (!(fpid = fork())) {

83 server_test_program (iport , 2);

84}

85 client_test_program (”localhost”, iport+-+4, 0);
86

87 // kill server terst programm

88 kill (fpid, 9);

89

90 printf (” trying accept—call and function—call read mode... 7);
91 fflush (stdout);

92 server_test_program (iport, 3);

93 sleep (2);

94 client_test_program (”localhost”, iport+-+, 0);
95

96 printf (” testing authentification... 7);

97 fflush (stdout);

98 if (!(fpid = fork())) {

99 server_test_program (iport , 4);

100 }

101

102 client_test_program (”localhost”, iport+-+4, 1);
103

104 // kill server terst programm

105 kill (fpid , 9);

106

107

108 exit (0);

109 }

110

111

112 /%% test000lsockts: see test000lsockts.c, Client Test Programm.
113

114 The client test program generates a block of nx(bufsize) random
115 bytes, sents theses bytes to the server, receive a block from
116 server , invert it and compare it with generated block.

117

118 BUGS: Receives only one block. If not all data ready and function
119 resv () do noct block, data get lost. Test fails.

120

121 @param server (char %) contains the server name

122

123 @param port (int) specifies the port on the server

124

125 @param auth (int) 0: normale test; 1: do authentification before
126 run test.

127

128 x/

129 client_test_program (char xserver, int port, int auth) {

130 [] kot sk sk sk sk sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk sk sk ok ok s sk sk ok ok s sk sk ok K sk sk sk ok K sk sk sk ok sk ok sk ok K sk ok ok ok ok k
131 // #*xx Client Test Programm

132

133 int i;

134

135 // FD of socket

136 int sock;

137

138 char buf[bufsize], buf2[bufsize];

APPENDIX G: SOURCE CODE OF THE TESTS

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

int type, type2, rsize;

// wait one second, give the fork enough time to bind and listen
// the socket

sleep (1);

if (block_random (buf, bufsize) == NULL) {
fail ("cannot generate random numbers”, 1);

}

if (block_random ((char %) &type, 2) == NULL)
fail (”cannot generate random numbers”, 1);

}

// Connect to server
if ((sock = socket_connect(server, port)) < 0) {
1

fail (”Cannot connect.”, 1);
}
sleep (3);
if (auth) {
struct AUTHINFO *local , *remote;
char a[] = ”remote”;
char b[] = ”loginname543217;
// if (socket_mdbauth(sock, NULL, &b, &local, &remote) < 0) {
if (socket_mdbauth(sock, (char %) &a, NULL, &local, &remote) < 0)
fail ("authentifications failed!”, 1);
} else {
printf (”(client OK [%s:%s]) ”, local —> name, local —> passwd);
fflush (stdout);
}
}

// send datablock to server
block_send (sock, type, buf, bufsize);

// receive datablock from server
block_receive (sock, &type2, buf2, &rsize , bufsize, false);
if (rsize != bufsize) {
fprintf(stderr , "WARNING: received less data from server than was
7 send.\n(%d:%d)\n”, rsize , bufsize);
}

close (sock);

// invert the bits of the local datablock and
// compare it with the result from the server
// should be the same.
for (i = 0; i < bufsize; i++4+) {
if ("buf2[i] !'= buf[i]) {
fail ("some errors occure during the data transfer...”, 1);

}

printf ("OK.\n”);
fflush (stdout);
sleep (1);

/%

testfunction which ist called from block_call () if a
message/datablock has received.

122

{

7\

APPENDIX G: SOURCE CODE OF THE TESTS 123

204 block_call_do_test (int fd, int id, unsigned int type, char xbuf,
205 unsigned int size, int term) {

206 int i;

207

208 if (id != threadid) {

209 fprintf(stderr , ”++ WARNING: Thread—ID was not stored correctly!”);
210 }

211

212 // invert the bits of the whole datablock

213 for (i = 0; i < size; i++4) {

214 buf[i] = “buf[i];

215

216

217 // printf(”block_call_do_test ()”);

218 fflush (stdout);

219

220 // send inverted datablock to client

221 block_send (fd, type, buf, size);

222 close (fd);

223}

224

225

226 /=%

227 testfunction which ist called from block_call () if a

228 the connection terminates.

229 %/

230 block_call_term_test (int fd, int id) {

231 int i;

232

233 if (id != threadid) {

234 fprintf(stderr , ”++ WARNING: Thread—ID was not stored correctly!”);
235 }

236

237 printf (”(server: connection terminated.)\n”);

238 fflush (stdout);

239 }

240

241

242 /xx

243 testfunction which ist called from socket_accept () if someone has
244 connected .

245 %/

246 socket_accept_do_test(int fd, int id, char *pip,

247 struct sockaddr_in their_addr, int term) {
248 block_call(fd, id, false,

249 (void %) block_call_do_test ,

250 (void %) block_call_term_test);

251}

252

253

254 /xx test0001lsockts: see test000lsockts.c, Server Test Programm.
255

256 The server test program binds a port and waits for connections. If
257 someone connects it reads nx(bufsize) bytes, invert all bits of
258 these bytes and send all back.

259

260 BUGS: Receives only one block. If not all data ready and function
261 resv () do noct block, data get lost. Test fails.

262

263 @param port (int) specify the port to bind.

264

265 @param mode (int) select the mode of receiving a message/datablock:
266 0: blocked mode, use block_receive (); 1: poll mode, poll with

267 block_receive_poll (); 2: call function block_call_do_test () if a

268 block is received , use block_call (); 3: call

APPENDIX G: SOURCE CODE OF THE TESTS

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

*/

se

socket_accept_do_test () if someone has connected. This function
calls block_call () which does the same like in 2, use
socket_accept (); 4: testing authenication by using
socket_mdbauth (). After this do the same as in 0.

rver_test_program (int port, int mode) {
[/ s sk s sk ok kKR KK K K o o oK oK oK oK KKK KKK R K K K K K K K K K SR KK KKK E K K K K o oK oK oK oK oK K KK K
// x%x Server Test Program

// buffer for storing data.
char *xbuf;

// FD of socket which is bounded to the port
int sockport;

// FD of socket

int sock;

/* connector’s address information x/
struct sockaddr_in their_addr;
int sin_size;

// Bind port
if ((sockport = socket_bind(port, 10)) < 0) {

fail (”Cannot bind port.”, 1);

}

if (mode == 3) {
socket_accept (sockport , threadid, (void *) socket_accept_do_test);
return;

}

// accept connection

sin_size = sizeof(struct sockaddr_in);

if ((sock = accept(sockport, (struct sockaddr *) & their_addr,

&sin_size)) I= —1) {
int i, size, type;
char xpard = inet_ntoa(their_addr.sin_addr);
// fprintf(stdout, ” got connection from %s\n”, pard);

// receive datablock from client

switch (mode) {

case O:
// blocking function
buf = block_receive (sock, &type, NULL, &size , 0, false);
if (buf == NULL) {

fprintf(stderr, ”Can’t receive block from client...\n”);
exit (1);
break ;
case 1:
// polling function
i = 0;
do {
usleep (2L);
i++;
buf = block_receive_poll(sock, &type, NULL, &size , 0, false);
} while (buf == (char %) 1L);
if (buf == NULL) {
fprintf(stderr , ”Error during receivion occured...\n”);
exit (1);
printf (?(%d polls) 7, i);

fflush (stdout);

124

APPENDIX G: SOURCE CODE OF THE TESTS 125

334 break;

335 case 2:

336 // function call

337 block_call (sock, threadid, false, (void %) block_call_do_test ,
338 (void %) block_call_term_test);

339 sleep (500); // simulate the running of the ”"normal” program...
340 return ;

341 break;

342 case 4:

343 // authentification with blocking function

344 {

345 struct AUTHINFO *local , *remote;

346 char a[] = ”loginnamel23457”;

347

348 if (socket_md5auth(sock, NULL, (char %) &a, &local, &remote) == 0) {
349 printf (”(server OK [%s:%s]) ”, local —> name, local —> passwd);
350 fflush (stdout);

351

352 buf = block_receive (sock, &type, NULL, &size, 0, false);
353 if (buf == NULL) {

354 fprintf(stderr, "Can’t receive block from client...\n”);
355 exit (1);

356

357 }

358 break ;

359 }

360

361 // invert the bits of the whole datablock

362 for (i = 0; i < size; i++){

363 buf[i] = ~buf[i];

364 }

365

366 // send inverted datablock to client

367 block_send (sock, type, buf, size);

368 close (sock);

369 }

370 close (sockport);

371 exit (0);

372

373

374

G.4 src/test/tes005realtime.c

1 /*x

2 @file Server — and Client—Testprogram for the linemonitor functions.
3

4 @param server server to be connected (clientprogram only)

5

6 @param port to be connected (client) or port to be listened (server)
7

8 @param soft_msec (int) timeout in milliseconds which causes

9 soft —real —time exception.

10

11 @param hard_msec (int) timeout in milliseconds which causes

12 hard—real —time exception.

13

14 @param wait_msec (int) timeout for resent —— sending of the next
15 ping.

16 */

17

18 /x

APPENDIX G: SOURCE CODE OF THE TESTS 126

19 Copyright (c) Andreas Hofmeier

20 (www.an—h.de, www.an—h.de.vu, www.lgut.uni—bremen.de/an—h/)

21

22 This program is free software; you can redistribute it and/or modify
23 it under the terms of the GNU General Public License as published by
24 the Free Software Foundation; either version 2 of the License, or
25 (at your option) any later version.

26

27 This program is distributed in the hope that it will be useful, but

28 WITHOUT ANY WARRANTY; without even the implied warranty of
29 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

30 General Public License for more details.

31

32 You should have received a copy of the GNU General Public License
33 along with this program; if not, write to the Free Software

34 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

35 %/

36

37 #include <stdio.h>
38 #include ”libcomm.h”

39

40

41 /x+ Exception Function, print exception code and meaning on the
42 screen

43 x/

44 linemonitor_exception (char xserver , int port, int type) {
45 printf(”linemonitor_exception(%s, %d, %d): 7,

46 server , port, type);

47 switch (type) {

48 case 0:

49 printf (”Connecion Fault\n”);

50 break;

51 case 1:

52 printf (”Soft Real Time Exception\n”);

53 break;

54 case 2:

55 printf ("HARD Real Time Exception\n”);

56 break ;

57 case 3:

58 printf (” Transmission Fault\n”);

59 break ;

60 case 4:

61 printf (”Emergency Stop\n”);

62 break;

63 } /x switch () =/

64 }

65

66

67 main(int argc, char xargv[]) {

68 char buf[255];

69 int fd = 0;

70

71 // Client Mode: Server Port soft_msec hard_msec wait_msec
72 if (arge == 6) {

73 printf (” Client Mode\n”);

74 linemonitor (argv [1], atoi(argv[2]),

75 atoi(argv[3]), atoi(argv[4]), atoi(argv[5]),
76 linemonitor_exception);

77)

78

79

80 // Server Mode: Port soft_msec hard_msec wait_msec
81 if (argec == 5) {

82 printf (”Server Mode\n”);

83 fd = linemonitor_server (atoi(argv[1]),

APPENDIX G: SOURCE CODE OF THE TESTS 127

84 atoi(argv[2]), atoi(argv[3]), atoi(argv[3]),

85 linemonitor_exception);

86 }

87

88 if ((arge !'=5) && (arge != 6)) {

89 printf (” Client Mode: %s server port soft_msec hard_msec wait_msec\n” \

90 ”Server Mode: %s port soft_msec hard_msec wait_msec\n\n”, argv|[0], argv[0]);
91 exit (0);

92 }

94 while (1) {

95 gets (buf);

96 linemonitor_emergencystop (fd);
97 }

98}

G.5 src/example/testO0linterface.c

1 /*x

2 @file

3

4 Testprogram for the interface to the robot. Interface will be
5 initiated , than absolutes coordinates are asked for.
6 x/

7

8 #include <stdio.h>

9

10

11 main(int argc, char sxargv[]) {
12 int x, y;

13 interface_init (0);

14

15 while (1) {

16 printf (”Enter X: 7);

17 scanf("%d”, &x);

18 printf (”Enter Y: 7);

19 scanf("%d”, &y);

20

21 interface_driveto (x, y);
22 }

	 Aim and Objectives
	 Deliverables
	1 Introduction
	2 Technical Background and Context
	2.1 Modes to Control a Robot
	2.1.1 Direct Control
	2.1.2 Supervisory Control
	2.1.3 Job Scheduling

	2.2 Levels of Processing
	2.3 Adaptability of the Program which Controls the Robot
	2.4 Feedback
	2.5 Real Time and Bandwidth Constrains
	2.5.1 How the Internet Works
	2.5.2 Changing Behaviour and Delay
	2.5.3 Carrier Sense Multiple Access with Collision Detection
	2.5.4 Level to Use
	2.5.5 Monitor the Line
	2.5.6 Buffer to Compensate Random time Delay
	2.5.7 Use a Simulator

	2.6 Safety

	3 Technical Approach
	3.1 The Ping Measurement
	3.1.1 Ping
	3.1.2 Source -- Destinations

	3.2 Basic Concept
	3.3 Implementation of the Library
	3.3.1 Network Layers
	3.3.2 Usage of the Linux Network Implementation
	3.3.3 Block Transfer Functions
	3.3.4 Line Monitoring Functions
	3.3.5 Authentication

	3.4 Demonstration with a Real Robot
	3.4.1 The Robot
	3.4.2 Hardware-Interface to the Robot
	3.4.3 Software-Interface to the Robot
	3.4.4 GUI and Simulator

	4 Results and Discussion
	4.1 Analysis of the Ping Measurement
	4.2 Result of the Ping Measurement
	4.3 Test of the Library
	4.3.1 Basic Functions
	4.3.2 Block Transfer Functions
	4.3.3 Line Monitoring Functions

	4.4 Test of the Interface to the Robot
	4.4.1 Hardware-Interface
	4.4.2 Software-Interface

	4.5 Test of the GUI and the Simulator

	5 Conclusions and Recommendations for Further Work
	5.1 Project Conclusions
	5.2 Personal Conclusions
	5.3 Recommendations for Further Work

	6 Bibliography and References
	7 Project Planning
	7.1 Work Breakdown
	7.2 Gantt Chart of Final Stage
	7.3 Project Schedule
	7.3.1 Comparison: Pre and After Interim Stage
	7.3.2 Comparison: After Interim Stage and Final Stage

	7.4 Milestones

	Appendix A: User's Manual GUI for Robot and Server
	A.1 Both Programs (guirobot and guiserver) explained
	A.2 Manipulate the Position of the Robot's Platform
	A.3 Stopping the Robot
	A.4 Starting both Programs, Parameter

	Appendix B: API of the Network Library
	Appendix C: Source Code of the Network Library
	C.1 src/lib/libcomm.h
	C.2 src/lib/libcomm.c

	Appendix D: API of the Interface
	Appendix E: Source Code of the Interface
	E.1 src/example/interface.c

	Appendix F: Source Code of the GUI
	F.1 src/example/guicommon.c
	F.2 src/example/guirobot.c
	F.3 src/example/guiserver.c

	Appendix G: Source Code of the Tests
	G.1 src/test/test001sockets.c
	G.2 src/test/test002integer.c
	G.3 src/test/test003block.c
	G.4 src/test/tes005realtime.c
	G.5 src/example/test001interface.c

